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Abstract 

 

This paper deals with the application of an innovative method for combining estimated 

outputs from a number of rainfall-runoff models using Gene Expression Programming 

(GEP) to perform symbolic regression. The GEP multi-model combination method uses 

the synchronous simulated river flows from four conventional rainfall-runoff models to 

produce a set of combined river flow estimates for four different catchments. 

 

The four selected models for the multi-model combinations are the Linear Perturbation 

Model (LPM), the Linearly Varying Gain Factor Model (LVGFM), the Soil Moisture 



Accounting and Routing (SMAR) Model, and the Probability-Distributed Interacting 

Storage Capacity (PDISC) model. The first two of these models are ‘black-box’ models, 

the LPM exploiting seasonality and the LVGFM employing a storage-based coefficient 

of runoff. The remaining two are conceptual models. The data of four catchments with 

different geographical location, hydrological and climatic conditions, are used to test the 

performance of the GEP combination method.  

 

The results of the model using GEP method are compared against original forecasts 

obtained from the individual models that contributed to the development of the 

combined model by means of a few global statistics. The findings show that a GEP 

approach can successfully used as a multi-model combination method. In addition, the 

GEP combination method also has benefit over other hitherto tested approaches such 

as an artificial neural network combination method in that its formulation is transparent, 

can be expressed as a simple mathematical function, and therefore is useable by 

people who are unfamiliar with such advanced techniques. The GEP combination 

method is able to combine model outcomes from less accurate individual models and 

produce a superior river flow forecast. 
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Introduction 

In the context of rainfall-runoff modeling, the multi-model combination approach 

advocates the synchronous use of the simulated discharges of a number of rainfall-

runoff models to produce an overall combined/integrated discharge which can be used 

as an alternative to that produced by a single rainfall-runoff model. The basic hypothesis 

made in the multi-model combination approach is that different models capture different 

aspects of the data and hence the combination of these aspects would produce better 

discharge estimates than those produced by any one of the individual models involved 

in the combination.  

The use of the multi-model combination of rainfall-runoff models was advocated by 

Shamseldin(1997) and Shamseldin et al.(1997). Since then there have been  several 

more studies which have dealt with multi-model combination of hydrological models 

(e.g. (Abrahart and See 2002, Ajami, et al. 2006, Coulibaly, et al. 2005, Hsu, et al. 2009, 

See and Openshaw 2000, Shamseldin and O'Connor 1999, Shamseldin, et al. 2007, 

Viney, et al. 2009, Xiong, et al. 2001)).As the nature of the combination function is 

unknown and no theory exists to analytically derive the combination function from a 

hydrological or physical point of view, previous studies have used empirical data-driven 

modeling to derive the combination function and such use is very appropriate. 

In previous hydrological multi-model combination studies, both linear and non-linear 

soft computing (e.g. neural network and fuzzy-based) combination methods have been 

used to produce multi-model river flows (Coulibaly, et al. 2005, See and Openshaw 

2000, Shamseldin 1997, Xiong, et al. 2001). The linear combination methods include 

the Simple Average Method (SAM) and the Weighted Average Method (WAM). In the 



SAM, the combined output is simply the arithmetic average of the outputs of each 

individual model used in the combination. The SAM is a naïve forecast combination 

method, which can work very well when the constituent models have practically the 

same level of performance; it is more sensible to use it purely as a baseline against 

which the results of more sophisticated combination methods can be compared.  In the 

WAM, the combined forecast is calculated as the weighted sum of the forecasts of the 

constituent rainfall-runoff models, thereby, allowing for the situation where the 

constituent models have significantly different levels of performance. Shamseldin et al. 

(1997) pioneered the use of an artificial neural network (ANN) for efficient multi-model 

combination of a group of rainfall-runoff models. In the previous studies ANN 

combination methods were found to be generally better than those of the linear 

weighting (WAM) and fuzzy-based methods (Xiong, et al. 2001) (See and Abrahart 

2001, Shamseldin, et al. 1997, Xiong, et al. 2001). The Fuzzy-Based Combination 

Method (FBCM) uses a set of fuzzy IF-THEN rules to transform the synchronous 

individual model forecasts (operating as inputs) into a single combined output forecast. 

See and Openshaw (2000) and Xiong et al. (2001) introduced the use of fuzzy methods 

for the combination of river flow forecasts. Xiong et al.(2001) concluded that a first 

Order Takagi-Sugeno type FBCM can yield results that are better than those of the best 

of the constituent models, i.e. that it can function effectively as a hydrological multi-

model combination technique. More recently guidelines for choosing an effective 

method of combination have been developed (Jeong and Kim 2009). 

The above noted studies have demonstrated the potential capabilities of the multi-

model combination approach in improving the accuracy and reliability of hydrological 



modeling results and have laid the foundation for the further use of this approach in 

rainfall-runoff modeling.  However, in these studies no attempts have been made to 

explore the nature of the combination function and its inner working. Furthermore, no 

explanation has been provided to clarify the improvements in the modeling results.  

The use of Gene Expression Programming (GEP) (Ferreira 2006) to perform  

symbolic regression and develop a combination type rainfall-runoff model for a single 

river has been recently reported (Fernando, et al. 2009).The outcome of that preliminary 

study to develop a combined multi-model-output GEP model to simulate daily flow in a 

single river catchment concluded that the GEP model performance was superior in 

comparison to the individual models, the transparency of the GEP model was useful, 

and that there was a need to prevent over-fitting of the data to the GEP model. 

 The current paper extends that initial investigation to cover four river catchments 

with diverse characteristics and presents a set of mathematical equations that were 

evolved in GeneXproTools 4.0: a powerful software package that is used to accomplish 

the combinatorial operations. The paper focuses on further advancing our 

understanding about the inner working of the multi-model combination function which 

can hold the key for further improvements in modeling results as well as providing 

guidance about the effective development of multi-model combination systems. 

GeneXproTools 4.0is used to develop multi-model combination functions based on daily 

estimates of four rainfall-runoff models for four catchments with different geographical 

location and climate conditions. In broad terms, symbolic regression is very similar to 

traditional parametric regression in the sense it attempts to derive a functional 

relationship/model which describes the relationship between dependent and 



independent variables. In traditional parametric regression, the form of the function 

relating dependent and independent is specified a priori and the usual regression 

procedures are used to estimate the corresponding parameter values. Symbolic 

regression is a form of nonparametric regression in which the function relating 

dependent and independent variables is not specified a priori but the function is 

constrained to contain a number of mathematical or logical expressions to be chosen 

from a larger set of pre-selected expressions. GEP is used to simultaneously select the 

optimum set of expressions involving the appropriate input variables. 

The four selected models for the multi-model combinations are: the Linear 

Perturbation Model (LPM), the Linearly Varying Gain Factor Model (LVGFM), the Soil 

Moisture Accounting and Routing (SMAR) Model and the Probability-Distributed 

Interacting Storage Capacity (PDISC) model.  The first two models are ‘black-box’ 

models, the LPM exploiting seasonality and the LVGFM employing a linear variation of 

the runoff coefficient with discharge. The remaining two are conceptual rainfall-runoff 

models. Further details on these models and their applications are given by others 

(Ahsan and O'Connor 1994, Kachroo 1992, Moore 1985, Nash and Barsi 1983, 

Senbeta, et al. 1999, Shamseldin, et al. 1997, Tan and O'Connor 1996). 

The rest of this paper is structured as follows. The next section gives an introduction 

to GEP and explains the basis of performing symbolic regression using GEP, as 

implemented in the software package GeneXproTools 4.0. The section after that is 

devoted to providing an explanation of the data used in the study. This is then followed 

by a section discussing the application and the results. The final section outlines the 

main conclusions of the paper and the limitations of this study. 



Gene Expression Programming 

GEP is an evolutionary algorithm that is used to develop computer programs based on 

a search and optimization technique using analogies from natural selection and 

evolution. GEP captures the best properties of Genetic Algorithms (GA) and Genetic 

Programming (GP), but eliminating the constraints associated with implementing the 

genetic operators inherent to them. Although GA and GP are well known in the 

literature, application of GEP is only beginning to emerge (Steeb, et al. 2005). In GEP 

individual expressions are encoded in linear chromosomes which in turn make up 

expression trees whereas in GA it is done in the reverse, i.e., the individuals are parse 

trees, which can be somewhat cumbersome, that can thereafter be expressed as a 

linear string. 

A detailed description of the operation of the GEP algorithm is not intended here; only 

a brief explanation of the underlying principles is instead presented by means of a 

simple example. For a detailed explanation of GEP theory and its operation refer to the 

extensive work of Ferreira (Ferreira 2001, Ferreira 2006, Ferreira 2009). GEP utilizes 

genotype (Linear Chromosome: LC) expressions which are translated to phenotype 

(Expression Tree: ET) expressions.  Any algebraic and/or mathematical expression can 

be encoded as a genotype expression, i.e., as a gene of appropriate length made up of 

two main parts - a head and a tail. For instance, the algebraic expression involving two 

independent variables a and b, Sin[(a+ab).a.Sin(b)] is represented by the genotype 

expression S*+*a*Sabababaa  where S stands for Sine Function. The length of this 

gene is 15, with the front part made up of the “head”, shown bold and underlined, of 

length 7 (usually chosen as appropriate to the problem) involving both functions and 



variables, and a “tail” of length 8 involving only the variables. If the length of the head of 

the gene is h, the tail length t is then given by t = (n-1)h +1 where n is the number of 

variables (in this instance, n=2). The ET for this gene, easily developed by following the 

coding sequence of the gene from left to right, is as shown in the Figure 1. As can be 

seen, although the gene itself is of length 15, only the functions and variables up to 

position 11 are required to express this algebraic equation. During evolution in GEP the 

gene undergoes standard genetic operations such as copying, cross-over and mutation. 

A mutation at, say, the 5th position in the gene from the variable “a” to division function 

“/” converts the expression from S*+*a*Sabababaa to S*+*/*Sabababab. This changes 

the expression to Sin[((b/a)+a.b).(a.Sin(b))] and the ET to the one shown in Figure 2. 

The evolution of GEP is guided by the fitness of the functions generated during the 

evolution process. The fitness could be a measure of the error (i.e. the objective 

function) signifying the difference between the function outcome and the actual 

expected value. The actual GEP allows the concatenation of several functions (or 

genes), either through addition/subtraction or multiplication/division. The evolution of 

GEP can be terminated either when the fitness of the function reaches an optimum 

value or when the algorithm has evolved through a pre-specified number of evolutions. 

GEP can, given the relevant data, find the mapping function between the 

independent variables (outputs from the individual models) and the dependent variable 

(the actual flow rate). The algorithm begins by setting up arbitrarily a gene based on 

user specified functions and input/independent variables to form the head of gene, the 

length of head, user specified or default values for genetic operators. The error between 

the program evaluated output and the expected output/dependent output (fitness of the 



function) is calculated. In the following iterations, the gene is subjected to genetic 

operators at user-defined rates as a result of which a new equation is formed and the 

new fitness is evaluated. The evolution of the equation is terminated when a user-

defined threshold fitness value or a number of iterations is achieved.  

Independent Model Data Sets  

Five separate sets of data for each of the four major rivers were used for this study: the 

first set is the observed flow at the river gauge and the remaining four are the predicted 

daily flow values from four conventional models - Linear Perturbation (LPM), the 

Linearly Varying Gain Factor (LVGFM), the Soil Moisture Accounting and Routing 

(SMAR), and the Probability-Distributed Interacting Storage Capacity (PDISC). Each 

model was calibrated to the data of each catchment and the calibrated model 

parameters were used to produce the estimated discharges. In each catchment, the 

models and the combination methods were developed and verified using the same 

calibration and verification period. Full details of the procedures used in calibrating the 

four rainfall-runoff models can be found elsewhere (Ahsan and O'Conner 1994, Kachroo 

1992, Moore 1985, Nash and Barsi 1983, Senbeta, et al. 1999, Shamseldin, et al. 1997, 

Tan and O'Connor 1996). LPM, LVGFM and PDISC models were calibrated on 

minimization of the least squares objective function. For SMAR model, the objective 

function reflected both the volumetric error and the mean square of the errors 

(Shamseldin et al, 1997). 

Of the four rivers included in this study, three are situated in China and one in 

Ireland. The data for these river catchments have been previously used for combination 

model development research and therefore provide good prospects for comparison. 



Table 1 summarizes some basic information regarding these catchments. 

The Baihe catchment drains to a tributary of the Yangze River. This catchment, 

situated in a semi-arid to arid part of China, contributes extremely low flow inputs during 

most parts of the year but experiences peak flow rates of nearly ten times the dry 

weather flow during the flood season. The Brosna river catchment in Ireland is very flat 

and covered largely by grassland. The flow pattern in this river shows strong seasonal 

variation and a substantial base flow element.  

The Shiquan catchment flows from a mountainous region and displays rapid rises 

and falls of daily flow rates. Nearly 70-80% of the annual rainfall in the catchment falls 

between May and October; this is evident from the flow records that confirm near-zero 

values during the remaining months of the year in this semi-arid catchment. 

The upper reaches of the Yanbian catchment are relatively flat. Major flooding occurs 

during the wet season that runs from June to October and the flow rate recedes 

gradually to reach extremely low levels from November to May until the rains begin in 

June. 

Of the four conventional models, SMAR is the individual model that best predicts the 

daily flow in all these catchments giving the highest correlation with the observed flow 

values. Full particulars are provided in a subsequent section. 

 

Application of GenXProTools 

In this study, for each catchment the GenXProTools® tool was used to identify the 

mathematical relationship between the input variables - the individual rainfall runoff 

model estimated river flows - and the required output - the observed daily river flow. 



This study is different to other reported applications of GEP in hydrology [e.g. (Aytek 

and Alp 2008, Barbulescu and Bautu 2009)] in that GEP is used to synthesize a 

transparent and more accurate model of predicted daily flow using a functional 

regression of combinations of predictions from other more conventional models. To the 

best of researchers’ knowledge this has not yet been attempted to this extent. 

Input/output Variables 

The four independent input variables used in this study comprised concurrent estimated 

discharge values obtained from LPM, LVGFM, PDISC and SMAR models. The 

expected output was the measured daily flow of the river. Table 1 summarizes the data 

sample sizes for training and testing. 

Functions 

The basic functions used for the GEP in the software are given in Table 2. As the 

intention is to produce a simple combination function, the more complex options were 

excluded from this selection. The other important GEP model parameters and the 

notations of the inputs (i.e. individual model outputs) are shown in Table 3. As indicated 

in this table, the solution is expected to be the sum of three expressions (resulting from 

three genes) and the fitness of a population in one generation is calculated based on 

the Mean Square Error (MSE).  The tool was used to evolve the GEP through 100,000 

evolutions and the resulting final model for each catchment made up of three additive 

expression trees, resulting from three genes G1, G2 and G3, was identified. 

Results 

Each evolved component and final mathematical multi-model for the four catchments is 



shown in Figures 3-6. Each multi-model contains three Subordinate Expression Trees 

(indicated as Sub–ET 1, Sub-ET 2 and Sub–ET3) or genes (G1, G2 and G3)which in 

turn are constituted by a selection of input variables and functions. For instance, the first 

expression tree (Sub-ET1or G1) for the Baihe River is the mathematical function 

G1=0.48(PDISC+0.48Sin3.85)–LVGFM).Each model is made up of three genes or 

components, addition of which give the final mathematical expression for the 

combination of the individual rainfall-runoff models. Each gene (G1, G2 and G3) is not 

expected to contribute an equal amount to the predicted multi-model output. In order to 

understand the role each gene plays in the GEP combination model, the contribution by 

each gene/component towards the combined model output was then evaluated. The 

primary gene is the one that contributes most to forming the output and is also identified 

in the captions of the Figures 3-6 in which the expression for that gene is underlined. 

Figure 7 (a -h) shows contributions from the primary component (on the primary y- 

axis with a larger range) and the two secondary components (on the secondary y-axis 

with a smaller range of +/- values) plotted for each catchment for training and testing 

sets respectively left to right. From these results it can be seen that one of the genes 

makes a dominant contribution (large variations depicted on the major primary scale) 

towards the combination model output and the other two act as supplementary 

components representing a relatively very small corrective signal (smaller variations 

depicted on the minor secondary scale). 

Table 4a summarizes the individual models that participate in the primary and 

secondary components of each multi-model. The PDISC model is present as a primary 

contributor in three out of the four catchment models. As shown in Table 4b, out of the 



four conventional models, the SMAR model is the individual model that has ranked 

highest in predicting the daily flow in all four catchments giving the highest correlation 

with the observed flow values. Comparing the information in these two tables, it is can 

be seen that in most cases each GEP combined model involves the 1st and/or 2nd 

ranked individual in its primary component indicating preference of selection and/or 

elimination of redundant duplicate signals. Furthermore, the GEP combined models also  

use the lowest ranking individual models (PDISC and LVGFM) to form their primary 

components in all but one catchment; the Brosna catchment only uses one independent 

model in its primary component - SMAR.  

The GEP multi-models for Baihe and Yanbian catchments do not include the highest 

ranking individual model SMAR at all. The GEP multi-models for Yanbian and Shiquan 

catchments contain all of the four individual rainfall-runoff models. Some explanation 

can be given for this selective participation of some of the individual models using how 

well these hydrologically different catchments were represented by the individual 

models, and how the individual model predictions correlate to the combined GEP model 

predictions. 

Table 5 summarizes the correlation between the individual and the multi-model 

outputs and actual observations. The table shows that without exception, the GEP 

combined models deliver daily flow estimates that possess a higher correlation 

coefficient with the observed flow than the correlation coefficient values associated with 

the individual models. 

As explained earlier, semi-arid Baihe catchment has widely varying flow and 

conceptual models such as SMAR and PDISC provide best estimates for individual 



model predictions (Table 4b). The GEP model has involved the PDISC output as its 

primary component. For this catchment, the correlation between the SMAR model 

outputs and the other individual models, particularly, LPM (r=0.94) and PDISC (r=0.935) 

are significantly high implying that the patterns in the SMAR outputs are encapsulated in 

the latter two. Thus the participation of the PDISC and LVGFM in the primary 

component and LPM in the secondary had pre-empted the need for the SMAR models 

input. Although the individual SMAR model has the highest correlation with the 

observed flow (~0.979), the combined GEP model provides a better correlation 

(~0.993).  

The Brosna catchment is located in a temperate climatic region and both the SMAR 

(conceptual) and the LPM (black box type) individual models provide high accuracy for 

daily flow estimates (See Table 4b). The PDISC model output has poor correlation with 

the observed data (r=0.643) and has been completely left out of the combination model. 

The SMAR model, on the other hand, has the highest correlation with observed values 

(r=0.965) and has participated in the dominant ET in the GEP model. The combined 

GEP model gives the best correlation with the observed flow (r=0.996). 

The semi-arid Shiquan catchment with near-zero flows in most part of the year is best 

represented by the conceptual models SMAR and PDISC (Table 4b). The combined 

model has used both of these models and also LVGFM in the primary component to 

produce a superior GEP model that has the highest correlation with the observed values 

(r=0.993) (Table 5). 

The Yanbian catchment that displays gradual recession between rainy seasons, has 

been fairly well represented by both the conceptual models as well as the black box 



models, with correlation coefficients r>0.935 for all models (See Table 4b). The 

combined GEP combined model has chosen the LVGFM (black box type) and PDISC 

(conceptual) model outputs to synthesize a forecast superior to all the individual models 

with r=0.994 (see Table 5). 

Table 6 summarizes the statistics for both the training and testing sets for all four 

catchments which highlight the superiority of the performance of the GEP models 

compared to the individual models. All of the individual models were calibrated and 

verified using the same calibration and verification periods. Summarizing the information 

in the tables 4 – 6, it can be concluded that the GEP combination model provides a 

superior solution; in addition, the model equation can be explicitly written as a simple 

mathematical function. 

Figure 8 (a-h) shows the correlation between the observed and combined model 

predicted flow values for the four catchments for training and testing sets respectively 

from left to right. They show fairly tight scatter about the observed values. 

Figure 9 (a-h ) shows the flow duration curves for the catchments for the training and 

testing set, from left to right, which confirm that the GEP combined model predictions 

give the closest fit to the observed curve. 

 

Conclusions  

The following conclusions can be made: 

Compared to individual LVGFM, PDISC, LPM, and SMAR models, the GEP 

combination model that combines the synchronous flow forecast values from these four 

conventional models is able to provide a superior estimate of the flow forecast for all 



four catchments considered in this study. 

The GEP combination modeling approach offers a promising way to seek flow 

forecasts through a transparent model combination method as opposed to the “Black 

box” approaches used so far to combine a set of individual models. The mathematical 

equations that combine the synchronous outputs of individual models can be obtained 

and used further for forecasting without relying on sophisticated software. Thus this 

could be an alternative that can be provided to practitioners who do not necessarily 

have an in-depth understanding of novel techniques such as ANN or GEP concepts. 

This research sought to establish that a superior and transparent combination model 

can be achieved using the novel GEP technique and using individual model outputs; 

further research is being carried out to compare the GEP technique with other 

transparent as well as black box combination techniques and to investigate ways to 

improve the performance of the GEP combined model to make it universally acceptable. 
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Figure 1: Expression tree 
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Figure 2: Expression tree after mutation 



 

 
C0 = -0.486938; C1 = 3.857239; d1: LVGFM; 

d2: PDISC 

 

C0 = 5.327179; C1 = 9.550537; d0:LPM; 

d1:LVGFM; d2:PDISC 

 

 
C0 = -1.231903; d1: LVGFM; d2: 

PDISC  

 

Model = -0.48*(PDISC-(-0.48Sin(3.85))- LVGFM) 

+ PDISC*((Sin((((LVGFM-1.23)^(1/3))^(1/3)))^2)^(1/3)) 

+ Sin(((5.32*PDISC)/(PDISC-5.32)))/(( LPM -9.55)-Sin(LVGFM)) 

Figure 3:  Expression Trees and model equation for combination model for Baihe River 

catchment (Primary Gene is Sub-ET 2, or G2 the expression for which is underlined.) 



 
 

 

C1 = -6.510223; 

d0:LPM; d1:LVGFM 

 

 

C1 = -5.64798; d1:LVGFM; d3:SMAR 

 

C0 = 9.673981; C1 = 1.024719; d3:SMAR 

Model = LPM/(((LVGFM^(1/3))^(1/3))*(Sin(LVGFM)-(-6.5/LPM))) 

+ (((-5.64*SMAR)+SMAR)/((LVGFM—5.64)+(SMAR^2)))^3 

+ SMAR+(((1.02/9.67)/SMAR)/((SMAR+9.67)+SMAR)) 

Figure 4: Expression Trees and model equation for combination model for Brosna River 

catchment (Primary Gene is Sub-ET3, or G3; expression underlined.) 



 

 
C0 = 5.791687; C1=-4.41333; d2:PDISC; d3:SMAR (Primary 

Gene) 

 

C0 =  2.715393; C1=0.198517; d0: LPM; d1:LVGFM  

 

C0=6.213958; C1=6.182953;d2=PDISC; d3=SMAR 

Model = SMAR-(PDISC/(((-4.41-LPM)/(5.79^(1/3)))^2)) 
+ ((Sin(2.71+0.19)^2)^2)*(LPM-LVGFM) 
+ Sin((6.18^2))*(((PDISC-SMAR)-6.18)+6.21) 

Figure 5: Expression Trees and model equation for combination model for Shiquan 

River catchment (Primary Gene is Sub-ET1, or G1; expression  underlined.) 

 



 

 

C0 = 6.890381; C1 = 2.658905;  d1:LVGFM; d2:PDISC 

d0: LPM; d2: PDISC; d3: SMAR 

 

 

C1 = 4.077301; d1:LVGFM; d2:PDISC; 

d3: SMAR; C0=2.266815 

Model = PDISC-(((PDISC+PDISC)+(LVGFM/2.65))/((PDISC+6.89)+PDISC)) 

+ LPM*(Sin((SMAR/(PDISC+PDISC)))^3) 

+ PDISC*(((LVGFM/((4.07*2.26)+SMAR))^3)^3) 

 
Figure 6: Expression Trees and model equation for combination model for Yanbian 

River catchment (Primary Gene is Sub-ET1, or G1;expression  underlined.) 



 
 

 

 
 

Figure 7: Components of the combined models (a) Bahie river Training set (b) Bahie 
river Testing set (c) Brosna river Training set (d) Brosna river Testing set (e) Shiquan 
river Training set (f) Shiquan river Testing set (g) Yanbian river Training set (h) Yanbian 
river Testing set 



 

  



Figure 8:Predicted Vs. Observed flow (a)Bahie river Training set (b)Bahie river Testing set (c) Brosna 
river Training set (d) Brosna river Testing set (e)Shiquan river Training set (f)Shiquan river Testing set 
(g)Yanbian river Training set (h) Yanbian river Testing set 

 

  

Figure 9: Flow duration curves (a)Bahie river Training set (b)Bahie river Testing set (c) 
Brosna river Training set (d) Brosna river Testing set (e)Shiquan river Training set 
(f)Shiquan river Testing set (g)Yanbian river Training set (h) Yanbian river Testing set 

 

 



 

 

 

Table 2. Available inputs and functions for random selection 

Function/Input Symbol 

Addition + 

Subtraction - 

Multiplication * 

Division / 

Square root Sqrt 

Exponential Exp 

Natural logarithm Ln 

x to the power of 2 x2 

x to the power of 3 x3 

Cube root 3Rt 

Sine Sin 

LPM Model output as input d0 

LVGFM Model output as input d1 

PDISC Model output as input d2 

SMAR Model output as input d3 

 

Table 1. Daily flow data used  

Catchment Country Area 

(km²) 

Climate Daily flow 

record 

start 

Training 

sample 

size  

Testing 

set size 

Baihe China 61780 Semi-arid 01/01/1972 2117 730 

Brosna Ireland 1207 Temperate 01/01/1969 2832 730 

Shiquan China 3092 Semi-arid 01/01/1973 2116 730 

Yanbian China 2350 Humid 01/01/1978 2102 730 

 



 
 

 

Table 3. Parameters used for genes, genetic operators and assessment of 

fitness function 

Parameter Value Parameter Value 

Number of 
chromosomes 

30 Two  point recombination  0.1 

Head size 8 Gene recombination 0.3 

Number of genes 3 Gene transposition 0.3 

Fitness function  MSE Numerical constants per 
gene 

2 

Mutation 0.044 Lower/Upper limits of 
constants 

±10 

Inversion 0.1 RNC (Random Numerical 
constants) Mutation 

0.01 

IS (Insertion 
sequence) 
Transposition 

0.1 Dc (additional gene 
domain) mutation 

0.044 

RIS (Root Insertion 
sequence)  
Transposition 

0.1 Dc inversion 0.1 

One point 
recombination  

0.1 Dc Is transposition 0.1 

 



 

 
 

Table 4a. Input variables chosen in combined model development  

Catchment Primary 
Gene 

Models in  
primary 
component 

Models in 
secondary 
components 

Non-
participating 
models 

Baihe G2 PDISC, 
LVGFM 

PDISC, LVGFM, 
LPM  

SMAR 

Brosna G3 SMAR SMAR, LPM, 
LVGFM  

PDISC 

Shiquan G1 PDISC, 
SMAR 

LPM, LVGFM, 
PDISC, SMAR 

- 

Yanbian G1 LVGFM, 
PDISC 

SMAR, LVGFM, 
LPM, PDISC 

- 

 

Table 4b. Rank of individual models based on correlation coefficient (models used in 

the primary component of the combined model underlined) 

Catchment Rank 1 Rank 2 Rank 3 Rank 4 

Baihe SMAR (0.979) PDISC(0.973) LPM (0.961) LVGFM (0.896) 

Brosna SMAR(0.965) LPM(0.962) LVGFM(0.870) PDISC(0.664) 

Shiquan SMAR(0.970) PDISC(0.967) LPM(0.957) LVGFM(0.886) 

Yanbian SMAR(0.989) LVGFM(0.959) LPM(0.949) PDISC(0.935) 

 



 
 

Table 5: Correlation coefficients between individual model results for training data 
(highest value in bold and dominant models in the primary component underlined) 

Catchment  Model LPM LVGFM PDISC SMAR GEP 

Baihe LPM 1 - - - - 

  LVGFM 0.862 1 - - - 

  PDISC 0.936 0.923 1 - - 

  SMAR 0.940 0.898 0.935 1 - 

GEP 0.961 0.909 0.976 0.981 1 

  Observed  0.961 0.896 0.973 0.979 0.993 

Brosna LPM 1 - - - - 

  LVGFM 0.839 1 - - - 

  PDISC 0.643 0.722 1 - - 

  SMAR 0.928 0.851 0.683 1 - 

  GEP 0.958 0.878 0.679 0.973 1 

  Observed  0.962 0.870 0.664 0.965 0.996 

Shiquan LPM 1 - - - - 

  LVGFM 0.848 1 - - - 

  PDISC 0.927 0.920 1 - - 

  SMAR 0.929 0.907 0.928 1 - 

  GEP 0.826 0.898 0.974 0.980 1 

  Observed  0.957 0.886 0.967 0.970 0.993 

Yanbian LPM 1 - - - - 

  LVGFM 0.911 1 - - - 

  PDISC 0.888 0.940 1 - - 

  SMAR 0.939 0.950 0.920 1 - 

  GEP 0.947 0.961 0.941 0.990 1 

Observed  0.949 0.959 0.935 0.989 0.994 

 
 
 
 
 
 
 



 
 Table 6. Summary statistics for model performance (best in bold) 

LPM LVGFM PDISC SMAR GEP Observed 

Bahie (Training set) 

Mean 1.07 1.06 0.94 1.14 1.07 1.07 

Peak 28.25 14.77 27.94 26.67 25.03 26.33 

RMSE 0.550 0.847 0.459 0.409 0.226 0 

RMSE as a % Observed mean 51.6 79.5 43.0 38.4 21.2 0 

RMSE as a % Observed peak 2.1 3.2 1.7 1.6 0.9 0 

R² Value 0.9608 0.8958 0.9735 0.9787 0.9930 1 

Bahie (Testing set) 
 Mean 0.78 0.98 0.93 1.11 1.05 1.07 

Peak 22.66 15.54 33.02 21.62 26.98 27.62 

RMSE 0.905 1.075 0.502 0.540 0.284 0 

RMSE as a % Observed mean 84.7 100.6 47.0 50.6 26.6 0 

RMSE as a % Observed peak 3.3 3.9 1.8 2.0 1.0 0 

R² Value 0.9552 0.9044 0.9844 0.9769 0.9936 1 

Brosna (Training set) 

Mean 0.96 0.97 0.96 0.99 0.96 0.95 

Peak 5.86 3.16 3.53 4.01 4.39 4.82 

RMSE 0.212 0.357 0.529 0.205 0.072 0 

RMSE as a % Observed mean 22.3 37.5 55.7 21.6 7.6 0 

RMSE as a % Observed peak 4.4 7.4 11.0 4.3 1.5 0 

R² Value 0.9619 0.8704 0.6645 0.9646 0.9955 1 

Brosna(Testing set) 
 Mean 1.22 1.06 1.04 1.19 1.12 1.12 

Peak 6.62 3.30 3.43 5.00 5.75 5.71 

RMSE 0.319 0.403 0.647 0.239 0.087 0 

RMSE as a % Observed mean 28.4 35.9 57.7 21.3 7.8 0 

RMSE as a % Observed peak 5.6 7.1 11.3 4.2 1.5 0 

R² Value 0.9596 0.9124 0.7436 0.9694 0.9957 1 

Shichuan (Training set) 
 Mean 1.11 1.10 0.93 1.25 1.04 1.11 

Peak 29.51 16.61 27.40 27.03 28.81 28.03 

RMSE 0.670 1.023 0.594 0.572 0.278 0 

RMSE as a % Observed mean 60.4 92.2 53.6 51.6 25.1 0 

RMSE as a % Observed peak 2.4 3.7 2.1 2.0 1.0 0 

R² Value 0.9570 0.8861 0.9672 0.9698 0.9927 1 

Shichuan(Testing set) 
 Mean 1.06 1.09 0.88 1.23 1.00 1.07 

Peak 33.46 12.30 19.37 17.19 19.36 22.47 

RMSE 0.960 0.923 0.527 0.572 0.363 0 

RMSE as a % Observed mean 89.5 86.1 49.2 53.3 33.9 0 

RMSE as a % Observed peak 4.3 4.1 2.3 2.5 1.6 0 

R² Value 0.8901 0.8619 0.9634 0.9528 0.9801 1 

Yanbian (Training set) 
 Mean 2.64 2.64 2.39 2.64 2.64 2.64 

Peak 29.56 17.78 23.60 19.85 28.25 24.31 

RMSE 1.111 0.943 1.225 0.530 0.367 0 

RMSE as a % Observed mean 42.1 35.7 46.4 20.1 13.9 0 

RMSE as a % Observed peak 4.6 3.9 5.0 2.2 1.5 0 

R² Value 0.9488 0.9592 0.9348 0.9892 0.9939 1 

Yanbian (Testing set) 
 



Mean 2.64 2.62 2.43 2.63 2.65 2.65 

Peak 22.43 13.58 20.09 15.30 22.22 17.90 

RMSE 1.170 1.041 1.195 0.655 0.477 0 

RMSE as a % Observed mean 44.2 39.3 45.1 24.7 18.0 0 

RMSE as a % Observed peak 6.5 5.8 6.7 3.7 2.7 0 

R² Value 0.9423 0.9515 0.9475 0.9838 0.9896 1 

 
 

 


