A Collaborative Constraint-based Intelligent System for
Learning Object-Oriented Analysis and Design using UML

Nilufar Baghaei

Department of Computer Science and Software Engineering
University of Canterbury

n.baghaei@cosc.canterbury.ac.nz

ABSTRACT

Automatic analysis of interaction and support for group learning
through a distance collaborative learning system is at the
forefront of educational technology. Research shows that
collaborative learning provides an environment to enrich the
learning process by introducing interactive partners into an
educational system and creating more realistic social contexts.

This paper presents COLLECT-UML, a constraint-based ITS
that teaches object-oriented design using Unified Modelling
Language (UML). UML is easily the most popular object-
oriented modelling technology in current practice. Constraint-
Based Modelling (CBM) has been used successfully in several
tutoring systems, which have proven to be extremely effective in
evaluations performed in real classrooms. We have developed a
single-user version that supports students in learning UML class
diagrams. The system was evaluated in a real classroom, and the
results showed that students’ performance increased
significantly while interacting with the system. We are now
extending the system to provide support for collaboration. An
overview of both single-user and collaborative versions of the
system is presented. A full evaluation study has been planned
for April 2006, the goal of which is to evaluate the effect of
using the system on students’ learning and collaboration.

1. INTRODUCTION

E-learning is becoming an increasingly popular educational
paradigm as more individuals who are working or are
geographically isolated seek higher education. As such students
do not meet face to face with their peers and teachers, the
support for collaboration becomes extremely important [3].
There have been several definitions for collaborative learning.
The broadest (but unsatisfactory) definition is that it is a
situation in which two or more people learn or attempt to learn
something together [4]. A more comprehensive definition states
as follows: “... a coordinated, synchronous activity that is the
result of a continued attempt to construct and maintain a shared
conception of a problem”.

Effective collaborative learning includes both learning to
effectively collaborate, and collaborate effectively to learn, and
therefore a collaborative system must be able to address
collaboration issues as well as task-oriented issues [6].

In the last decade, many collaborative learning environments
have been proposed and used with more or less success.
Researchers have been exploring different approaches to analyse
and support the collaborative learning interaction. However, the
concept of supporting peer-to-peer interaction in Computer-
Supported Collaborative Learning (CSCL) systems is still in its
infancy, and more studies are needed to test the utility of these
techniques. Some particular benefits of collaborative problem-
solving include: encouraging students to verbalise their thinking;
encouraging students to work together, ask questions, explain
and justify their opinions; increasing students’ responsibility for

their own learning and increasing the possibility of students
solving or examining problems in a variety of ways. These
benefits, however, are only achieved by active and well-
functioning learning teams [11].

This paper describes COLLECT-UML, an Intelligent
Tutoring System (ITS) that uses Constraint-Based Modeling
(CBM) approach to support both problem-solving and
collaborative learning. The CBM approach is extremely
efficient, and it overcomes many problems that other student
modeling approaches suffer from. CBM has been used
successfully in several tutors supporting individual learning [7].
We provide a brief overview of the single-user version which we
have finished developing [1, 2] and describe extensions being
made to this tutor, to support multiple students solving problems
collaboratively.

2. RELATED WORK

This section provides examples of three types of CSCL systems,
in the context of the collaboration management model [6, 9]:

= Reflecting Actions: The most basic level of support a
system may offer involves making the students aware of the
participants’ actions. Actions taken on shared resources, or those
that take place in private areas of a workspace may not be
directly visible to the collaborators, yet they may significantly
influence the collaboration. Raising awareness about such
actions may help students maintain a representation of their
teammates’ activities. The system described in [8] is an example.
* Monitoring the State of Interactions: Systems that
monitor the state of interaction fall into two categories: those
that aggregate the interaction data into a set of high-level
indicators, and display them to the participants, and those that
internally compare the current state of interaction to a model of
ideal interaction, but do not reveal this information to the users.
In the former case, the learners are expected to manage the
interaction themselves, having been given the appropriate
information to do so. In the latter case, this information is either
intended to be used later by a coaching agent, or analysed by
researchers in an effort to understand and explain the interaction.
EPSILON [11] and MArCo [12] are examples of such systems.

= Offering Advice: This will include the CSCL systems that
analyse the state of collaboration using a model of interaction,
and offer advice intended to increase the effectiveness of the
learning process. The coach in an advising system plays a role
similar to that of a teacher in a collaborative learning classroom.
The systems can be distinguished by the nature of the
information in their models, and whether they provide advice on
strictly collaboration issues or both social and task-oriented
issues. Examples include LeCS [10] and COLER [3].

Although many tutorials, textbooks and other resources on
UML are available, we are not aware of any attempt at
developing a CSCL environment for UML modelling. However,
there has been an attempt [11] at developing a collaborative
learning environment for OO design problems using Object

Modeling Technique (OMT) — a precursor of UML. The system
monitors group members’ communication patterns and problem
solving actions in order to identify (using machine learning
techniques) situations in which students effectively share new
knowledge with their peers while solving OO design problems.
The system dynamically assesses the group interactions and
determines when and why the students are having trouble
learning the new concepts they share with each other. The
system does not evaluate the OMT diagrams and an instructor or
intelligent coach’s assistance is needed in mediating group
knowledge sharing activities. In this regard, even though the
system is effective as a collaboration tool, it would probably not
be an effective teaching system for a group of novices with the
same level of expertise, as it could be common for a group of
students to agree on the same flawed argument.

3. coOLLECT-UML: SINGLE-USER VERSION

COLLECT-UML is a problem-solving environment, in which
students construct UML class diagrams that satisfy a given set of
requirements. It assists students during problem-solving, and
guides them towards a correct solution by providing feedback.
The feedback is tailored towards each student depending on

his’/her knowledge. COLLECT-UML is designed as a
complement to classroom teaching and when providing
assistance, it assumes that the students are already familiar with
the fundamentals of object-oriented design. For details on
system’s architecture, functionality and the interface refer to [1,
2]; here we present only the basic features of the system.

At the beginning of interaction, a student is required to
enter his/her name, which is necessary in order to establish a
session. The session manager requires the student modeller to
retrieve the model for the student, if there is one, or to create a
new model for a new student. Each action a student performs is
sent to the session manager, as it has to link it to the appropriate
session and store it in the student’s log. Then, the action is sent
to the pedagogical module. If the submitted action is a solution
to the current problem, the student modeller diagnoses the
solution, updates the student model, and sends the result of the
diagnosis back to the pedagogical module, which generates
appropriate feedback.

COLLECT-UML contains an ideal solution for each
problem, which is compared to the student’s solution according
to the system’s domain model, represented as a set of
constraints. The system’s domain model contains 133 constraints
that describe the basic principles of the domain. In order to
develop constraints, we studied material in textbooks, such as
[5], and also used our own experience in teaching UML and OO
analysis and design.

We conducted an evaluation study in May 2005 [2]. The
study involved 38 volunteers enrolled in an introductory
Software Engineering course at the University of Canterbury,
which teaches UML modelling as outlined by Fowler [5]. The
students learnt UML modelling concepts during two weeks of
lectures and had some practice during two weeks of tutorials
prior to the study.

The study was conducted in two streams of two-hour
laboratory sessions. Each participant sat a pre-test, interacted
with the system, and then sat a post-test and filled a user
questionnaire. The pre-test and post-test each contained four
multiple-choice questions, followed by a question where the
students were asked to design a simple UML class diagram. The
participants spent two hours interacting with the system, and
solved half of the problems they attempted. The average mark on
the post-test was significantly higher than the pre-test mark (t =

2.71, p = 4.33E-08). The students spent on average 90 minutes
interacting with the system.

We also analyzed the log files, in order to identify how
students learn the underlying domain concepts. Figure 1
illustrates the probability of violating a constraint plotted against
the occasion number for which it was relevant, averaged over all
constraints and all participants. The data points show a regular
decrease, which is approximated by a power curve with a close
fit of 0.93, thus showing that students do learn constraints over
time. The probability of violating a constraint on the first
occasion of application is halved by the tenth occasion, showing
the effects of learning.
|

025

0.2 - el

o
=
3

y = 0.2174x°:3718
R? = 0.9291

Probability

01 4

1 3 5 i 9 1 13 15

‘ Occasion

Figure 1. Probability of constraint violation

The results showed that COLLECT=UML is an effective
learning environment [2]. The participants achieved significantly
higher scores on the post-test, suggesting that they acquired
more knowledge in UML modelling. The learning curves also
prove that students do learn constraints during problem solving.
Subjective evaluation shows that most of the students felt
spending more time with the system would have resulted in more
learning and that they found the system to be easy to use.

4. COLLECT-Umc: MULTI-USER VERSION

The collaborative version of COLLECT-UML is designed for
sessions in which students first solve problems individually and
then join into small groups to create group solutions. The system
has a distributed architecture, where the tutoring functionality is
distributed between the client and the server.

The interface, which is an extension of the single-user
interface, is shown in Figure 2. The problem description pane
presents a design problem that needs to be modelled by a UML
class diagram. Students construct their individual solutions in the
private workspace (right). They use the shared workspace (left)
to collaboratively construct UML diagrams while
communicating via the chat window (bottom).

The private workspace enables students to try their own
solutions and think about the problem before start discussing it
in the group. The group area is initially disabled. When all of the
students indicate readiness to work in the group by clicking on
Join the Group button, the shared workspace is activated, and
they can start placing components of their solutions in the
workspace. The Group Members panel shows the team-mates
already connected. Only one student, the one who has the pen,
can update the shared workspace at a given time.

The chat area enables students to express their opinion
regarding objects added to the shared area using sentence
openers. The student needs to select one of the sentence openers
before being able to express his/her opinion. When the student
clicks on Agree or Disagree buttons for example, the sentence “I

agree ...” or “I disagree ...” appears in the chat window and the
student may complete the sentence. The contents of selected
sentence openers are displayed in the chat area along with any
optional justifications.

The group moderator can submit the solution, by clicking
on the Submit Answer button on the shared workspace. The
feedback messages on the individual solutions as well as
contribution to the group solution and collaboration will appear
on the frame located in the right-hand side (Figure 2). The
system gives collaboration-based advice based on the content of
the chat area, students’ participation on the shared diagram and
the differences between students’ individual solutions and the
group solution being constructed. The task-based advice is given
to the whole group based on the quality of the shared diagram.

Figure 2. COLLECT=UML interface

Much research on learning has shown the potential
effectiveness of collaboration for improving student’s problem-
solving skills. These benefits, however, are only achieved by
active and well-functioning learning teams. An intelligent
educational system therefore needs to provide support not only
on the domain level, but also explicitly on collaboration.

The ultimate goal of COLLECT-UML is to support
collaboration by modelling collaborative skills. The system is
able to promote effective interaction by diagnosing students’
actions in the chat area and group diagram using a set of 22
meta-constraints, which represent an ideal model of
collaboration. These constraints have the same structure as
domain constraint, each containing a relevance condition, a
satisfaction condition and a feedback message. The feedback
message is presented when the constraint is violated. In order to
develop meta-constraints, we studied existing literature on
characteristics of an effective collaboration. Figure 3 illustrates
an example of a meta-constraint. This constraint makes sure that
the student does take part in solving exercises and/or chatting.

5. CONCLUSIONS AND FUTURE WORK

This paper presented the single-user version of COLLECT-
UML, and the results of the evaluation study performed. The
results of both subjective and objective analysis proved that
COLLECT-UML is an effective educational tool. The
participants performed significantly better on a post-test after
short sessions with the system, and reported that the system was
relatively easy to use.

We then presented the multi-user version of the same

intelligent tutoring system. We have extended COLLECT=

UMCL interface, and developed meta-constraints, which provide
feedback on collaborative activities. The goal of future work is
to complete the implementation of the multi-user version and
conduct a full evaluation study with second-year University
students enrolled in an undergraduate software engineering
course.

(240

"Would you like to contribute to the group discussion?"

T

(or-p (match SC CLASSES (7* "@" ?class_tag ?*))
(match SC METHODS (?* "@" ?method_tag 7*))
(match SC ATTRIBUTES (?* "@" ?attr_tag ?*))
(match SC RELATIONSHIPS (7* "@" ?rel_tag 2*))
(match SC DESC (?* "@" ?tag 7*)))

"descriptions"”

nil)

Figure 3. An example of a meta-constraint

CBM has been used to effectively represent domain
knowledge in several ITSs supporting individual learning. The
contribution of the project presented in this paper is the use of
CBM to model collaboration skills, not only domain knowledge.
Comprehensive evaluation of the collaborative version of

COLLECT-UML will provide a measure of the effectiveness of
using the CBM technique in intelligent computer-supported
collaborative learning environments.

6. REFERENCES

[1]1 Baghaei, N., Mitrovic, A. and Irwin, W. 4 Constraint-Based Tutor for
Learning Object-Oriented Analysis and Design using UML. In Looi, C.,
Jonassen, D. and Tkeda M. (eds.) ICCE 2005, pp.11-18.

[2] Baghaei, N., Mitrovic, A. and Irwin, W. Problem-Solving Support in a
Constraint-based Tutor for UML Class Diagrams, Technology,
Instruction, Cognition and Learning Journal, 4(1-2) (in print), 2006.

[3] Constantino-Gonzalez, M., and Suthers, D. Coaching Collaboration in a

Computer-Mediated Learning Environment. (CSCL 2002), (NI, USA,
2002), pp.583-584.

[4] Dillenbourg, P. What do you mean by “Collaborative Learning”. In

Dillenbourg, P. (Eds.), Collaborative Learning: Cognitive and

Computational Approaches, Amsterdam: Elsevier Science. pp.1-19, 1999.
[5] Fowler, M. UML Distilled: a Brief Guide to the Standard Object

Modelling Language. Reading: Addison-Wesley, 3™ edition, 2004.

[6] Jerman, P., Soller, A. and Muhlenbrock, M. From Mirroring to Guiding: A

Review of State of the Art Technology for Supporting Collaborative

Learning. European Perspectives on CSCL (CSCL 2001), (Netherlands,

2001), pp.324-331.

[7]1 Mitrovic, A., Mayo, M., Suraweera, P. and Martin, B. Constraint-based
Tutors: a Success Story. (IEA/AIE-2001), (Budapest, 2001), Springer-

Verlag Berlin Heidelberg LNAT 2070, pp.931-940.

[8] Plaisant, C., Rose, A., Rubloff, G., Salter, R. and Shneiderman, B. The

design of history mechanisms and their use in collaborative educational
simulations. (CSCL 1999), (California, USA, 1999), pp.348-359.

[9] Reimann, P. How to support groups in learning: More than problem

solving. In Aleven, V. (Eds.), Artificial Intelligence in Education (AIED
2003), (Sydney, Australia, 2003), pp. 3-16.
[10

system. 5th International Conference on Intelligent Tutoring Systems
(ITS 2000), (Montreal, Canada, 2000), pp.242-251.
[11

Things, Cape Cod, MA, 2000.

Tedesco, P. and Self, J. A. Using meta-cognitive conflicts in a
Collaborative problem solving environment. (ITS 2000), (Montreal,
Canada,2000), pp.232-241.

(2

Rosatelli, M., Self, J., and Thirty, M. LeCs: A collaborative case study

Soller, A. and Lesgold, A. Knowledge acquisition for adaptive collaborative
learning environments. AAAI Fall Symposium: Learning How to Do

