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Preface to thesis 

Generally, pain is a universal sensation.  Yet, the experience of pain is an individual and private 

occurrence, and is difficult to quantify (Auvray, Myin, & Spence, 2010).  Accordingly, there is a large 

area of research that focusses on developing methods to measure and diagnose pain.  One clinical 

effect that has been explored is that acute experimental pain appears to affect mental motor imagery 

(Hudson, McCormick, Zalucki, & Moseley, 2006; Moseley, Sim, Henry, & Souvlis, 2005).  This 

phenomenon is an interesting observation as it highlights an effect of pain on the cortex that may 

have potential significant clinical importance as an assessment of pain state (Coslett, Medina, Kliot, & 

Burkey, 2010a, 2010b; Schwoebel, Friedman, Duda, & Coslett, 2001).  However, this effect has 

received relatively little attention detail to date.  A more thorough understanding of the magnitude and 

characteristics of this phenomenon is needed before further steps can be taken in this area. 

 

 

Organisation of thesis 

This thesis is a 90 credit Master of Osteopathy project.  This thesis is arranged into three sections.  

The first section is a literature review which orients the reader to the relevant background knowledge 

regarding the neurological basis of pain and chronic pain, and the current knowledge base regarding 

mental motor imagery.  The second section contains manuscript has been prepared in accordance 

with the Brain Research journal Instructions for Authors [see Appendix 1.15].  The third section 

contains the appendices and will contain documents that are relevant for this thesis.   
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Section 1: Literature Review 

Introduction 

Pain is a protective mechanism that serves to promote survival (Iannetti & Mouraux, 2010) by creating 

action and protection against damage to body tissue integrity (Moseley, 2003).  Pain is a common 

experience, but it is not understood why some people develop a pain state that becomes persistent 

and complex to manage.  Unfortunately, the process of measuring pain symptoms, identifying at risk 

people and diagnosing a chronic pain state is problematic (Pergolizzi et al., 2012).  Inconsistent 

temporal based chronic pain definitions (generally between 3-6 months) and limited prognostic tools 

can delay the diagnosis of a chronic pain state (National Pain Summit Initiative, 2010).  Consequently, 

appropriate clinical interventions for the pain symptoms are delayed.  This situation may contribute to 

the persistence and severity of pain symptoms by allowing the development of central sensitisation, 

cortical changes associated with chronic pain, and biopsychosocial risk factors which all can begin to 

create barriers to successful recovery (Moseley, 2003).  Therefore, exploratory research into 

additional diagnostic approaches that may assist to identify people at risk of developing persistent 

pain is an important area of pain research.  In this area, a sizeable amount of literature has explored 

the effects of pain on cortical processing.  One notable aspect is that pain can influence the process 

of mental motor imagery which subserves left versus right discrimination judgements of body part 

images, subsequently resulting in findings which have revealed that acute pain and chronic pain have 

dissimilar effects on the latency of these judgements (Coslett et al., 2010a, 2010b; Moseley et al., 

2005; Reinersmann et al., 2010).  For this reason, a left-right discrimination task has potential clinical 

value as a diagnostic support tool to objectively monitor the possibility of pain related interference with 

this cortical function (Coslett et al., 2010b; Schwoebel et al., 2001).  The objective of this literature 

review is to explore relevant literature regarding the theory and cortical representation of pain 

generation.  Central sensitisation and the associated cortical neuroplastic changes will also be 

discussed.  Studies investigating the effects of pain on mental motor imagery will be evaluated with 

reference to the current understanding of the neurophysiological mechanisms that underpin the  

observed effects.   

Epidemiology of pain 

Acute pain is universal, normal, temporary response to tissue damage, surgery or other noxious input 

to the body.  Acute pain is a risk factor for the development of chronic pain, and as such, appropriate 

response, assessment, documentation, and management of symptoms are important factors in 

prevention of chronic pain development (National Pain Summit Initiative, 2010; Shipton, 2005).  

Chronic pain is estimated to have a weighted average prevalence of 20% in adults; one of the most 

detrimental and costly health problems in developed countries (Andrew, Derry, Taylor, Straube, & 

Phillips, 2014; International Association for the Study of Pain, 2003).  People who experience severe 



2 
 

chronic pain have a poorer health-related quality of life (Andrew et al., 2014; Dominick, Blyth, & 

Nicholas, 2011) and increased mortality rate (Torrance, Elliott, Lee, & Smith, 2010).  The symptoms of 

chronic pain can cause a reduction in day to day functional ability (Torrance et al., 2010) which 

contributes to the high economic cost of chronic pain (National Pain Summit Initiative, 2010; Leadley, 

Armstrong, Lee, Mien, & Kleijnen, 2012).  Examples of economic burdens created by chronic pain are 

increased healthcare services usage, lost work days, reduced-effectiveness work days, and lost 

caregiver potential and opportunities (National Pain Summit Initiative, 2010).   

 

Existing research indicates that patterns of chronic pain in New Zealand appear to be similar to those 

found internationally (Byrne, 2011; Dominick et al., 2011; Grace & Zondervan, 2006).  The latest 

epidemiological study analysed data from the 2006/07 New Zealand Health Survey and showed that 

one in six (16.9%) people report being in chronic pain (Dominick et al., 2011).  Reporting of chronic 

pain was strongly associated with decreased economic living standards and increased age (Dominick 

et al., 2011).  

Difficulties in quantifying pain 

The subjective nature of pain can create difficulties in the management of symptoms and diagnosis of 

a persistent pain state.  Pain is an interoceptive sense which signifies that an objective 

perception/reality distinction of symptoms cannot be made (Auvray et al., 2010).  Additionally, there is 

no objectively measurable relationship between a pain experience and tissue state (Moseley & Flor, 

2012).  Therefore, there is no absolute method to quantify a pain experience and clinicians and 

researchers must rely on self-reported measures or make inferences from behavioural or emotional 

changes (McMahon, Koltzenburg, & Wall, 2005; Von Korff & Miglioretti, 2005).   

 

Pain intensity is most often gauged using a scale measurement that provides a numerical measure 

(examples of scales of response levels include 0-5, 0-10, 0-100 or phrases such as ‘no pain, mild 

pain, moderate pain, intense pain, maximum pain’) (Ferreira-Valente, Pais-Ribeiro, & Jensen, 2011).  

Four common scales are the Visual Analogue Scale, Numerical Rating Scale (NRS), Verbal Rating 

Scale, and the Faces Pain Scale-Revised (Ferreira-Valente et al., 2011).  The NRS appears to have a 

slightly higher degree of responsiveness and compliance when compared to the other tools (Ferreira-

Valente et al., 2011; Hjermstad et al., 2011).  Examples of other tools that explore the quality and 

affective components of the pain experience are the McGill Pain Questionnaire (Melzack, 2005) and 

the Pain Quality Assessment Scale (Jensen, Lin, Kupper, Galer, & Gammaitoni, 2013).  These 

different types of measurement tools attempt to quantify and measure pain symptoms in a consistent 

and reproducible manner.   

 

The importance of pain measurement tools is emphasised by a body of work that has found that 

situational and patient variables such as ethnicity, gender (both practitioner and patient), age, 

presence of organic findings, litigation status, reported pain intensity, and patient distress levels can 
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influence an observer’s judgement of the patient’s pain state (Chibnall & Tan, 1999; Hirsh, 

Hollingshead, Matthias, Bair, & Kroenke, 2014; Wandner et al., 2014; Wandner, Scipio, Hirsh, Torres, 

& Robinson, 2012).  Also, despite the widespread use of a variety of scales to gauge pain symptoms, 

Morone and Weiner (2013) identify that the complexity of adequate pain assessment is often beyond 

the clinical skills of most practitioners.  Furthermore, a lack of pain education in healthcare 

professionals can lead to significant patient morbidity due to over or under treating (Morone & Weiner, 

2013).  Therefore, current difficulties in quantification of the pain experience warrant the need for 

research into more evaluative tools that may circumvent the subjective components of pain 

assessment. 

Progression of pain theories 

Some of the difficulty in measuring and diagnosing pain and chronic pain also stems, in part, from the 

continuing development of the conceptual models that explain the process of pain production.  For 

centuries, pain theories have described a linear cause and effect relationship between tissue injury, 

nociceptor stimulation, peripheral nerve pathway activation and pain sensation (Massieh & Davis, 

2013; Melzack, 1996).  Accordingly, diagnosis and management of pain and chronic pain emphasised 

identification of a primary pathological mechanism and source of nociception in the peripheral tissues.  

This approach to diagnosis and treatment is now considered to have limited and inconsistent success 

in a number of chronic pain syndromes (Gustin, Wrigley, Siddall, & Henderson, 2010; Pope, Deer, & 

Kramer, 2013; Wand et al., 2011). 

 

A further weakness of the linear model of pain is failure to illuminate the mechanisms of pain 

phenomena such as referred pain, phantom limb pain, pain resulting from a normally innocuous 

stimulus, pain in the absence of peripheral injury or nociception and persistent pain symptoms 

(Massieh & Davis, 2013).   These failings cause patients to be vulnerable to suspicion of symptom 

fabrication or malingering as judgements that are made by healthcare practitioners are influenced by 

the degree to which objective medical evidence is able to identify a physical lesion as causing pain 

(Chibnall & Tan, 1999).  In response to these weaknesses, historic pain theories have been 

vigorously challenged and have undergone extensive revision in recent years.  Revision of pain 

theories has been an important process because the conceptual models that explain pain form the 

foundational models that inform management and treatment (Melzack, 1996), the direction of 

research into new therapies (Massieh & Davis, 2013; Melzack, 2001), and ultimately, patient 

outcomes.  The two fundamental and most commonly accepted models of pain will be briefly 

described. 

 

The Gate Control Theory (Melzack & Wall, 1965) has been described as the most influential concept 

in the advancement of pain research (Massieh & Davis, 2013).  This theory established the dynamic 

modulating role of the central nervous system during the formation of pain symptoms and the concept 

of a significant downward modulation mechanism.  However, in a similar manner to linear pain 
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theories, the proposed mechanism of the Gate Control Theory was contingent on the existence of 

nociceptive signals in the periphery.  Therefore, the Gate Control Theory does not elucidate the 

mechanisms of pain phenomena which may lack peripheral nociceptive, or otherwise, signals (Acerra 

& Moseley, 2005).  Consequently, revision of the Gate Control Theory was prompted by consideration 

of reports of pain symptoms and phantom limb sensations following deafferentation (amputation, 

spinal cord transection, surgical removal, or congenital deformity) (Melzack, 1990).  It was then 

proposed that a supraspinal mechanism must also play a significant role in pain generation and the 

Pain Neuromatrix Theory was developed (Melzack, 1989, 1990, 1992). 

 

Currently, the Pain Neuromatrix Theory (Melzack, 1990) is the most widely recognised and accepted 

model of pain generation.  This theory describes pain as an ‘output’ of the brain that results from the 

parallel processing and integration of multiple ‘inputs’ in various supraspinal neural networks 

(Melzack, 1999).  As a pain generator, the brain responds dynamically to external and internal, 

conscious and unconscious information, and either in conjunction with or independently of peripheral 

input (Melzack, 1996).  Furthermore, this theory clearly explicates how nociception and pain are 

independent factors.  Additionally, the Pain Neuromatrix Theory provides the conceptual model for 

how nociception can trigger autonomic or behavioural reflexes in the body (Merskey & Bogduk, 1994) 

without generating a conscious experience of pain, and how nociception is neither necessary nor 

sufficient for pain (Iannetti & Mouraux, 2010; Loeser & Treede, 2008).  Numerous studies support the 

concept of a pain neuromatrix, including research that shows that pain can be experimentally 

generated in an artificial limb (Mohan et al., 2012) or manipulated using verbal cognitive modulation 

(Arntz & Claassens, 2004).  Pain is therefore understood to be the result of many multidimensional 

physiological, neurological and psychosocial factors.  These factors include the sensory-discriminative 

(intensity, location, quality, and duration), the affective-motivational (unpleasantness and the 

subsequent flight response), and the cognitive-evaluative (appraisal, cultural values, context, and 

cognitive state) dimensions of pain (Massieh & Davies, 2013, p. 10).  These factors interact to 

produce the pain experience, and each can modulate the perception of pain at any given time.   

1.1. Neuroanatomy of the pain neuromatrix 

The definitive anatomy of the pain neuromatrix is yet to be determined.  The networks involved are 

proposed to be predetermined by genetics and continuously updated by sensory input (Ionta & 

Blanke, 2009; Moseley, 2003).  Supraspinal regions that have been shown to consistently respond 

during processing of nociceptive input specifically are the caudal anterior cingulate cortex, mid-insula, 

and anterior cerebellum (Ploghaus et al., 1999) and the primary somatosensory cortex, secondary 

somatosensory cortex and its vicinity in the parietal operculum, insula, anterior cingulate cortex and 

prefrontal cortex (Treede, Kenshalo, Gracely, & Jones, 1999).  These areas serve to carry out various 

functions that form the multiple dimensions of a pain experience (Treede et al., 1999), and appear to 

undertake the parallel processing function as originally proposed (Melzack, 1989, 1990).  However, 

these reported ‘pain areas’ require careful interpretation as concurrent neurophysiological functions 

that are non-specific to pain may activate supplementary regions (Iannetti & Mouraux, 2010).  This 
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problem has been illustrated by Ploghaus et al. (1999) who showed that careful manipulation of 

pain/anticipation of pain was able to discriminately activate distinct brain regions that had previously 

been assumed to be solely related to the pain symptoms.  Furthermore, evidence of substantial intra- 

and inter-individual variability in neural activation and function during mapping of brain areas in 

research participants (Kobayashi, Hutchinson, Schlaug, & Pascual-Leone, 2003) also highlights 

difficulties in identifying definite brain networks.  Therefore, further research is required to establish 

the definitive neuroanatomy of the pain neuromatrix. 

1.2. Nociception can change the brain 

Nociceptive input can change the function and structure of the neurons that form the pain neuromatrix 

in the brain.  Initially, nociceptive input results in functional changes.  One functional change occurs 

when normal inhibition of neural networks is reduced or lost and results in  

 

 which results in reduction or loss of the cortical disinhibition of normally inhibited neural networks 

(Moseley & Flor, 2012) and activation of a wider expanse of the pain neuromatrix (Kobayashi et al., 

2009).   Habituation and conditioning occur when previous or persistent pain symptoms lead to the 

formation of explicit and implicit pain-related memories and increased sensitivity to previously 

innocuous stimuli (Flor, 2003).  This combination of disinhibition and sensitisation can underpin and 

perpetuate more long-term cortical reorganisation (Moseley & Flor, 2012).  More sustained functional 

changes in the supraspinal area occur when the cortical representation zone related to the 

nociceptive input expands and shifts into immediately adjacent areas, and this change is positively 

correlated to symptom intensity (Flor, 2003; Gustin et al., 2010; Wrigley et al., 2009).  An example of 

this shift has been shown to occur following deafferentation after an upper extremity amputation. Flor 

(2003) found  that the cortical amputation zone in both the somatosensory and motor cortices was 

expanded into by the mouth representation zone which caused peripheral input from the mouth area 

to subsequently be projected onto the absent limb. 

 

The structural properties of cortical neurons have also been shown to change during major 

nociceptive inputs and central sensitisation.  The characteristics of the changes are variable and 

Gustin et al. (2010) suggest that it is very likely that a multifaceted combination of cell death, cellular 

proliferation, neuronal sprouting, axonal loss, demyelination, oedema and changes in tissue barriers 

may occur, even in the same regions.  These structural changes are evident in cortical imaging 

research studies which report evidence that people with chronic pain have areas of altered brain 

morphology (usually a reduction in size) and function when compared to people who suffer acute pain 

or no pain (Flor, 2003; Moseley & Flor, 2012; Vartiainen, Kirveskari, Kallio-Laine, Kalso, & Forss, 

2009).  It is theorised that continued central sensitisation may result in more permanent maladaptive 

neuroplastic change in various cortical regions that form the pain neuromatrix, and these changes 

begin to generate and perpetuate abnormal pain symptoms (Wand et al., 2011).  There is 

accumulating evidence that the degree of cortical reorganisation is strongly and positively correlated 

to the severity of the reported phantom limb pain symptoms (Flor, 2003).  Also, cortical changes have 
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been implicated as contributing to the maintenance of symptoms independently of peripheral factors 

in some phantom limb pain patients (Birbaumer et al., 1997).  Post spinal cord injury neuropathic pain 

also shows positive correlate between the degree of cortical change and the severity of pain 

symptoms (Wrigley et al., 2009).  In a similar manner, symptom chronicity in chronic low back pain 

and fibromyalgia also positively correlates with the degree of cortical reorganisation (Flor, 2003).   

 

The cumulative effects of structural and functional changes of the neuromatrix are thought to produce 

chronic pain symptoms that can appear so significantly discordant to tissue state, activity levels, and 

expectations of perceptual reports (Moseley & Flor, 2012).   As central sensitisation occurs, the 

neuromatrix develops "an increased responsiveness of nociceptive neurons in the central nervous 

system to their normal or subthreshold afferent input" (Loeser & Treede, 2008, p. 474).  The clinical 

manifestations of temporary central sensitisation usually provide a biological advantage in that they 

increase sensitivity to subsequent peripheral inputs and minimise the risk of secondary injury, 

therefore improving the probability of tissue healing (Moseley & Flor, 2012).  However, the prolonged 

sensitisation of the neuromatrix leads to a heightened response to perceived threats to tissue integrity 

(Moseley & Flor, 2012) and an unnecessary protective pain experience occurs. 

 

An important observation regarding central sensitisation is that the relationship between chronic pain 

and the presence of cortical morphology and functional changes has been observed in a number of 

different chronic pain states (Moseley & Flor, 2012; Rodriguez-Raecke, Niemeier, Ihle, Ruether, & 

May, 2013).  Specifically, changes in the cingulate cortex, the orbitofrontal cortex, the insula and 

dorsal pons regions have been reported to overlap between different chronic pain syndromes (May, 

2008).  Examples of chronic pain syndromes that have been associated with cortical changes include 

carpal tunnel syndrome (Tecchio, Padua, Aprile, & Rossini, 2002), complex regional pain syndrome 

(Larbig, Montoya, Braun, & Birbaumer, 2006), chronic back pain (Wand et al., 2011), fibromyalgia 

(Flor, 2003), phantom limb pain (Birbaumer et al., 1997; Draganski et al., 2006; MacIver, Lloyd, Kelly, 

Roberts, & Nurmikko, 2008), post-herpatic neuralgia (Vartiainen et al., 2009), temporomandibular 

disorder (Younger, Shen, Goddard, & Mackey, 2010), some chronic type headaches (Puretić & 

Demarin, 2012), post-surgical pain (Shipton, 2011), irritable bowel syndrome and ulcerative colitis 

(Hong et al., 2014), persistent idiopathic facial pain (Schmidt-Wilcke, Hierlmeier, & Leinisch, 2010), 

and persistent neuropathic pain following spinal cord injury (Gustin et al., 2010).   Rodriguez-Raecke 

et al. (2013) highlights an important aspect of these findings; “a striking feature of all of these studies 

is the fact that the grey matter changes were not randomly distributed, but occur in defined and 

functionally highly specific brain areas – namely, involvement in supraspinal nociceptive processing” 

(p. 1).   Thus, the presence of cortical changes in the aforementioned chronic pain states provides 

further evidence for a pain neuromatrix and central sensitisation of these networks during pain.  

Moreover, the above listed chronic pain states show similar changes in cortical plasticity, thus 

supporting the concept that central sensitisation and associated cortical neuroplastic change appear 

to be common features of chronic pain, regardless of considerably dissimilar aetiologies or 

pathological mechanisms of the nociceptive inputs or painful symptoms. 
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There is, however, some evidence that could suggest that cortical changes in chronic pain are 

secondary to, rather than being the leading cause of, chronic pain symptoms (Rodriguez-Raecke et 

al., 2013).   Rodriguez-Raecke et al. (2013) describe swift partial resolution of structural grey matter 

alternations in 20 chronic pain patients who became pain free following total hip replacement surgery.  

The authors conclude that their results strongly suggest that long term nociceptive input and motor 

impairment are the direct cause of altered processing and structural changes in the cortex, and that 

these changes appear to be partially reversible with cessation of the nociceptive barrage (Rodriguez-

Raecke et al., 2013).  However, these results require careful interpretation and may be limited in their 

generalisability to other chronic pain states.  Unilateral hip osteoarthritis can be considered a chronic 

pain syndrome that has an easily discernible underlying pathogenesis and aetiology, and very good 

long term results following surgical intervention (Learmonth, Young, & Rorabeck, 2007).  Thus, 

surgical removal of the damaged tissues providing nociceptive input will undoubtedly reduce the 

nociceptive barrage on the central nervous system.  Additionally, all the participants in the hip 

osteoarthritis study experienced pain relief following surgery (Rodriguez-Raecke et al., 2013) and, as 

a result, are unable to represent the 10% of patients who experience on-going pain following a total 

hip replacement (National Pain Summit Initiative, 2010).   

 

Moreover, the psychosocial and contextual consequences of pain are also sufficient to create cortical 

changes (Rodriguez-Raecke et al., 2013).  The consequences of ongoing nociception is not limited to 

cortical change as mood dysfunction, cognition changes and social disruption can also occur (Siddall 

& Cousins, 2004).  Therefore, hip osteoarthritis, although painful and debilitating, may have 

considerably dissimilar emotional load to chronic pain that may be attributed to an unidentifiable 

peripheral tissue pathology or a significant trauma or injury.  Additionally, medically intractable 

symptoms or unexpected spontaneous onset may also increase the threat value of a painful 

experience.  These contextual factors that may create fear and anxiety can augment the chronic pain 

experience and contribute to experience and perception of the painful symptoms (Brown, Seymour, 

El-Deredy, & Jones, 2008; Siddall & Cousins, 2004).  Indeed, research on brachial plexus blockades 

in upper extremity phantom limb pain patients showed that anaesthetic blocks of the brachial plexus 

resulted in symptom relief and cortical reorganisation reduction in only some patients, highlighting that 

peripheral neural input may only be partially involved in chronic pain symptom production (Birbaumer 

et al., 1997).  Therefore, it may be that ongoing peripheral nociceptive input is an important factor in 

cortical reorganisation and chronic pain development; however, there is evidence that suggests that 

this relationship is not clear-cut  and that numerous secondary and tertiary factors that contribute to 

the pain experience are also important (Siddall & Cousins, 2004). 

1.3. Chronic pain as a disease? 

Until recently, chronic pain has been considered to be a syndrome, a group of syndromes (Tracey & 

Bushnell, 2009), or a symptom of an underlying pathology (Siddall & Cousins, 2004; Wand et al., 

2011).  At the present time, the cortical changes (both structural and functional) that are observed in 
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chronic pain patients strongly suggest that chronic pain may fulfil the definition of a disease; “a 

disorder of structure or function in a human, animal, or plant, especially one that produces specific 

symptoms or that affects a specific location and is not simply a direct result of physical injury” (Oxford 

Dictionaries, 2014; Tracey & Bushnell, 2009).  Thus, the neurological changes that occur during 

chronic pain may satisfy the requirements for a disease entity irrespective of the primary etiological 

factors or injury that may have triggered the initial acute pain episode (National Pain Summit Initiative, 

2010; Vartiainen et al., 2009).  Indeed, May (2008) states that pain loses its functional role when 

maladaptive neuroplastic changes occur and pain then becomes the disease entity.  The potential 

classification of chronic pain as a disease has led to a change in the focus of chronic pain treatment 

and management from identification and treatment of a primary underlying tissue pathology, to an 

integrated interdisciplinary biopsychosocial approach that focuses on the secondary and tertiary 

factors of pain in an individualised manner (National Pain Summit Initiative, 2010; Pergolizzi et al., 

2012).  Early intervention and prevention also become priorities when chronic pain is recognised as a 

disease entity, further supporting the need for appropriate diagnostic approaches (National Pain 

Summit Initiative, 2010; Siddall & Cousins, 2004).   

 

The recognition of chronic pain as a disease with specific structural/functional cortical changes also 

raises the question of whether neuroimaging could be used as a diagnostic tool.  There has yet to be 

sufficient conclusive evidence regarding the structural and functional changes found in the brains of 

chronic pain patients, and the cause and effect relationship is still unknown (Tracey & Bushnell, 

2009).  Significant differences in location and extent of neural structural and functional changes 

exists, and the frequency of comorbid conditions and secondary effects of pain in chronic pain 

patients is another factor that needs to be taken into consideration (Tracey & Bushnell, 2009).  

Therefore, although the possibility of neuroimaging for chronic pain diagnosis appears promising, only 

speculation is currently possible and further animal and human studies are required to improve the 

sensitivity and specificity of imaging techniques (Lee & Tracey, 2013). 

Clinical effects of pain on the sensorimotor cortices 

Central sensitisation has been shown to affect a number of different regions of the neuromatrix (Flor, 

2003); however, this literature review will focus on specific manifestations that occur following central 

sensitisation of the sensorimotor cortices.  The effects of central sensitisation on the affected primary 

sensorimotor cortices do not just occur at the neural level as there are reports of a number of clinical 

and behavioural effects.  Disruption of the spatial representation of the affected body part can lead to 

changes in processing of tactile stimuli (Moseley, Gallace, & Iannetti, 2012), alterations in the body 

image of the affected part (Moseley, 2008), and a decline in the ability to perform voluntary 

movements and motor imagery tasks (Bray & Moseley, 2011; Coslett et al., 2010a, 2010b; Moseley, 

2004; Richter, Röijezon, Björklund, & Djupsjöbacka, 2010).  The disruption to motor imagery can be 

objectively measured using a left-right discrimination task where participants are asked to identify an 

object as being either left or right sided or an image of a body part as being an anatomical left or right.  
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Research shows that left-right discrimination of body parts is a cortical mental motor imagery task that 

incorporates visual and sensorimotor processes (Ni Choisdealbha, Brady, & Maguinness, 2011) 

resulting in activation of the same primary sensorimotor cortices areas as real movement (Parsons & 

Fox, 1998).  In contrast to mental motor imagery, mental rotation and left-right discrimination of non-

body part objects invoke different cortical processes and do not involve the same extent of cortical 

motor processing (Conson, Mazzarella, Donnarumma, & Trojano, 2012; Ionta, Fourkas, & Aglioti, 

2010).  The mental motor imagery that subserves left-right discrimination can be a conscious or 

subconscious process depending on the degree of explicit instruction.  Therefore, an assessment of 

implicit left-right discrimination ability provides two outcome measures (accuracy, response time) and 

can provide information on the efficiency of mental motor imagery and degree of sensorimotor 

integration (Elsig et al., 2014). 

 

The mechanism that subserves left-right discrimination is theorised to consist of the participant 

choosing an initial rapid pre-conscious selection from the possible two responses (left or right) 

(Moseley et al., 2005).  Imagined movements of the corresponding limb on their cortical 

representation of their own body (‘virtual body’) are then used to corroborate the selection and confirm 

accuracy (Parsons, 1987a, 1987b) before the final decision is made.  Incorrect initial pre-conscious 

selections are corrected by using imagined movements of the opposite hand to re-check the final 

decision (Moseley et al., 2005).  Interestingly, mental motor imagery is subject to the same 

physiological constraints as actual movement and these restraints are reflected by delays in latency 

for left-right discrimination of limbs in anatomically difficult positions (Parsons, 1994; Richter et al., 

2010; Schwoebel et al., 2001).  Another factor that has been shown to modify response time latency 

of left-right discrimination judgements is pain.  Analysis of response time latency during left-right 

discrimination tasks has shown that there are dissimilar effects of acute and chronic pain on response 

time latency (Coslett et al., 2010a, 2010b).  These findings may indicate that the latency of left-right 

discrimination judgements may provide an objective indicator of a pain state (Coslett et al., 2010a, 

2010b; Schwoebel et al., 2001). 

1.4. Left-right discrimination latency during acute pain 

A small number of studies (with a combined sample size of n = 35) have found that, during acute 

experimental pain, left-right discrimination response times are delayed when judging images that 

corresponded to the unaffected limb (Hudson et al., 2006; Moseley et al., 2005).  Hudson et al. (2006) 

report a delay of approximately 600 ms (p = 0.005) for images corresponding to the non-affected hand 

during actual and expected acute experimental pain stimulus.  There was no effect of the 

experimental conditions on response times for left-right discrimination latency of pictures that 

corresponded to the affected hand (Hudson et al., 2006).  Moseley et al. (2005) found a similar result, 

with a mean reported delay of 382ms (95% CI = 590  to 190ms, p < 0.01)) for images of the non-

affected hand.  Another example of latency changes also occurs after altering the peripheral input to 

the cortical body representation by changing the position of the arms (Ionta & Blanke, 2009; Ionta, 

Perruchoud, Draganski, & Blanke, 2012).  Ionta and Blanke (2009) found that holding the right arm 
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behind the back (altered proprioceptive input) was sufficient to increase response time latency to 

images of the right hand only (1,302 ms, p < 0.04) when compared to holding the right hand in front of 

the body (1,185 ms).  Although the different experimental stimuli had different effects (either specific 

to images corresponding to the affected hand or not), the effects of experimental pain and changes in 

proprioceptive input are thought to show that the cortical body representation which subserves left-

right discrimination is constantly being influenced by peripheral input (Ionta & Blanke, 2009).   

 

The proposed mechanism of latency changes while completing left-right discrimination during acute 

experimental pain is that the threat value of the pain creates a bias in information processing towards 

the affected limb (Hudson et al., 2006; Moseley et al., 2005).  Participants are more likely to select the 

laterality of the affected limb as their initial response, subsequently resulting in a correction and 

reconfirmation of their selection when the virtual limbs and imaged limb do not match (Hudson et al., 

2006).  Therefore, response times for the non-affected hands are delayed by this ‘doubling up’ of 

mental motor imagery processing.  Additionally, it is thought that disinhibition and unmasking of latent 

neural connections occur in the nociception receptive area (Moseley & Flor, 2012) resulting in a 

greater accessibility or sensitisation of the sensorimotor cortex, thus encouraging the selection of the 

affected limb as the initial response.  One notable factor is that acute experimental pain does not 

affect response times to images corresponding to the affected limb (Hudson et al., 2006; Moseley et 

al., 2005).  It is thought that the lack of any effect on response times towards the affected hand shows 

that pain and nociception is not sufficient to cause actual disruption or facilitation of sensorimotor 

integration (Moseley et al., 2005), further supporting the possibility of an attentional bias. 

 

The validity of the hypothesis of an attentional or information processing bias towards the painful limb 

during left-right discrimination is yet to be confirmed as other forms of peripheral neural input such as 

proprioception and visual input (Ionta & Blanke, 2009; Ionta, Fourkas, Fiorio, & Aglioti, 2007; Ionta et 

al., 2012) have also been shown to alter response times in a limb and, often contradictory, laterality 

specific manner.  Furthermore, when the effects of experimental elbow pain was compared to 

experimental hand pain during a hand left-right discrimination task, elbow pain was shown to have no 

effect on response latency whereas hand pain did (Moseley et al., 2005).  This result was unexpected 

as participants had rated the pain intensity and perceptual characteristics of the elbow pain as similar 

to that of the hand pain (Moseley et al., 2005).  The authors hypothesised a number of possible 

explanations for their results; however, one criticism of the methodology was that different participant 

groups were used for the different pain locations, therefore making intra-individual comparisons 

impossible.  Interestingly, expectation of pain has also been shown to produce alterations of left-right 

discrimination latency in the same way that experimental pain does (Hudson et al., 2006), therefore 

indicating that that conscious pain symptoms are not necessary, and may only be partly related to, 

performance during left-right discrimination tests. 

 

Further possible flaws of the attentional or information processing bias during acute pain on left-right 

discrimination latency may be highlighted by the difference in responses between left and right 
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handed people.  Research into the effects of lateralisation show that right handed participants are 

facilitated in recognising images of right hands, whereas left handed participants show no clear 

facilitation for either laterality (Ni Choisdealbha et al., 2011).  Despite this facilitation, changes in 

proprioceptive information from the right upper limb have been shown to reduce response times to 

images of right hand, an effect that was only observed for right handed people as left handed people 

showed no alterations in response latency across the experimental conditions (Ionta & Blanke, 2009).  

Ionta and Blanke (2009) suggest that the mechanisms and factors underlying this effect are more 

complex than manual dominance and lateralisation alone.  A number of possible mechanisms are 

suggested; a predominantly right handed world may lead to increased visual familiarity with right 

hands for both groups, greater ambidextrousness in left handed individuals resulting in less 

lateralisation, and differing interactions between motor, visual and proprioceptive mechanisms in left 

and right handed people (Ionta & Blanke, 2009).  Because left and right handed people may be 

employing different underlying cortical mechanism during left-right discrimination, caution must be 

used when extrapolating experimental data to other populations as the biological factor of these 

differences has not yet been determined.  Additionally, this difference may limit the clinical utility of 

left-right discrimination latency measurements in different populations.   

 

Another perspective may be that the attentional bias theory is too simplistic to accurately model the 

effects of acute experimental pain on the cortex.  Formation of central sensitisation or an attentional 

bias has the possibility of opposing effects from both inhibitory and facilitatory neural circuits 

(Sandkühler, 2007). This is certainly true in the case of pain as there is a degree of uncertainty 

regarding the definitive functions of spinal and cortical neurons subserving nociception and pain 

(Iannetti & Mouraux, 2010; Sandkühler, 2007).  Consequently, sensitisation includes both algesia and 

analgesia promoting cortical change.  Therefore, it is probable that indiscreet and variable changes 

are occurring in a number of nociceptive and pain specific brain regions, alongside the hypothesised 

formation of an isolated attentional bias towards the nociception receptive area.   

 

Furthermore, the attentional bias theory does not include mention of the interhemispheric processes 

(mainly inhibitory) that occur during primary motor cortex activation (Hanajima et al., 2001).  

Interhemispheric inhibition and, to a lesser extent, facilitation occur primarily to suppress unwanted 

mirror movements of the contralateral homologous muscles (Kobayashi et al., 2003).  As left-right 

discrimination activates the same cortical regions as actual movement, it is plausible that 

interhemipsheric interactions also occur.  Consequently, discussion of these interactions is important 

because, in parallel to lateralisation, differences and asymmetries in the magnitude of 

interhemispheric interactions are reported between right and left handed people. Studies that have 

explored the phenomenon of asymmetrical bimanual coupling found that the non-dominant hand was 

more strongly influenced by dominant hand movements (with a more significant effect in right handed 

participants) (de Poel, Peper, & Beek, 2007; Kagerer, Summers, & Semjen, 2003). Right handed 

participants also showed stronger transcollosal inhibition of their non-dominant hemisphere following 

unilateral finger movements (Kobayashi et al., 2003).  Interestingly, Kobayashi et al. (2003) also found 
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that bilateral primary motor cortex activation occurs in some participants during unilateral non-

dominant finger movements.  Kobayashi et al. (2003) were unable to definitively elucidate the 

neurophysiological aetiology of this; however, it is interesting to note that this phenomenon indicates 

that inter-individual differences in the occurrence and magnitude of various interhemispheric 

interactions also exist.  Further hemispheric and motor function asymmetries are described by the 

'dynamic dominance' hypothesis (Sainburg, 2002; Schaefer, Haaland, & Sainburg, 2009), and given 

that cortical representations of hands in the primary motor cortices are said to be strong and highly 

effective (Kobayashi et al., 2003), the cortical function differences and resulting interhemispheric 

interactions may result in dissimilar cortical processes during left-right discrimination judgements 

between individuals. 

 

As only a small number of studies have investigated the effects of acute experimental pain on 

response time latency, there exists an opportunity to obtain a more thorough understanding of the 

magnitude and characteristics of left-right discrimination latency during acute experimental pain.  

Establishment of the normative latency changes has the potential to offer intriguing clinical 

opportunities regarding objective assessment and diagnosis of pain state.  

1.5. Left-right discrimination latency during chronic pain 

In contrast to left-right discrimination response time latency during acute pain, chronic pain syndrome 

patients most frequently show delayed response times to the images of limbs that correspond to the 

location and laterality of the affected limb (Coslett et al., 2010a, 2010b; Moseley, 2004; Reinersmann 

et al., 2010; Schwoebel et al., 2001).  In a different manner but with possible similar underlying 

mechanisms, chronic back pain, and history of chronic back pain, also affects mental motor imagery 

of the trunk by reducing accuracy of left-right discrimination judgements of images of trunks rather 

than changing response latency (Bowering, Butler, Fulton, & Moseley, 2014; Bray & Moseley, 2011).  

This observed effect is thought to indicate that the development of central sensitisation and 

neuroplastic change in the sensorimotor cortices disrupts the corresponding part of the virtual body 

and diminishes the efficiency of neuronal recruitment.  The disruption to the virtual body then causes 

a change in function of the sensorimotor cortex (and therefore mental motor imagery) corresponding 

to the painful area and altered left-right discrimination response times and accuracy rates (Coslett et 

al., 2010a, 2010b; Fiorio et al., 2007; Reinersmann et al., 2010; Schwoebel et al., 2001).   

 

In parallel to the relationship that has been observed between chronic pain and the presence of 

cortical neuroplastic changes (Moseley & Flor, 2012), the theorised disruption of the virtual body and 

subsequent altered left-right discrimination latency appears to be a common feature in a number of 

different chronic limb pain states despite the dissimilar aetiologies or pathological mechanisms 

(Reinersmann et al., 2010). Delayed left-right discrimination latencies have been shown in complex 

regional pain syndrome (Moseley, 2004; Reinersmann et al., 2010; Schwoebel et al., 2001), phantom 

limb pain (Reinersmann et al., 2010), and chronic musculoskeletal or radiculopathy in the 

arm/shoulder (Coslett et al., 2010b).  Reduced accuracy of left-right discrimination judgements have 
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been shown for knee osteoarthritis (Stanton et al., 2012) and chronic low back pain (Bowering et al., 

2014; Bray & Moseley, 2011).  The consistency of the effects of acute pain and chronic pain on 

response time latency does show promising implications for the possibility of developing a diagnostic 

support tool that might be useful for assessing the likelihood of developing a chronic pain state 

(Schwoebel et al., 2001).   

Characteristics of left-right discrimination latency changes 

The current body of research on left-right discrimination latency during acute pain and chronic pain 

states may indicate that the pattern of latency alterations could be used as a quantitative biomarker to 

discriminate between pain states (Elsig et al., 2014; Schwoebel et al., 2001).  If a left-right 

discrimination task could detect early and subtle sensorimotor integration changes that are associated 

with cortical neuroplastic change and central sensitisation, then this tool could be used as a 

diagnostic aid to improve accuracy and rapidity of a chronic pain diagnosis.  This situation would be a 

positive outcome in regard to the recent push and recommendations for more timely chronic pain 

diagnoses (National Pain Summit Initiative, 2010).   Additionally, there is evidence that the orientation 

of the imaged body part creates highly reliable effects on the left-right discrimination judgement 

latency, where the latency of response times can be related to the difficulty in creating the real 

movement to match the image (Coslett et al., 2010a; Moseley, 2004; Schwoebel et al., 2001).  This 

effect occurs in both left and right handed people (Ionta & Blanke, 2009).  The absence or 

modification of this effect would identify participants who were not completing the task in the 

appropriate manner and attempting to distort results (Coslett et al., 2010b).  Thus it is possible that a 

left-right discrimination task could be also used as an objective test for malingering or fictitious pain 

disorders, as well as discriminating acute and chronic pain states. 

 

In order to establish if the above possibilities are likely, it is important to establish the normative 

magnitude and characteristics of left-right discrimination responses during acute experimental pain.  

Normative values of left-right discrimination responses during acute pain would further inform the 

conclusions that have been reached in previous studies (Hudson et al., 2006; Moseley et al., 2005).  

Additionally, this data would be valuable in establishing a normative reference group that may be 

used to compare the left-right discrimination latency results of other individuals in differing pain states.   

Moreover, the precise cortical mechanisms underpinning left-right discrimination changes during pain 

remain to be elucidated and future research that utilises a similar methodological approach would be 

useful to investigate the attentional or information processing bias further. 

 

Assessment of left-right discrimination during acute experimental pain can be the most accessible 

way to investigate the definitive normative values of response time latency changes.  Intramuscular 

hypertonic saline injection is a widely used experimental pain model which induces reversible, 

localised pain in the injected area (Capra & Ro, 2004) in a reliable and safe manner (Graven-Nielsen, 

2006).  This technique has been used in experimental studies to allow the assessment of left-right 
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discrimination latency during acute experimental pain (Hudson et al., 2006; Moseley et al., 2005).   It 

is possible to build upon the results of similar studies  who experimentally determined that acute 

experimental pain significantly delays response time latency to images of the non-affected hand (P < 

0.01) (Hudson et al., 2006; Moseley et al., 2005).  It must be noted that experimental pain is 

inherently different from non-experimental pain in that it is not possible to match the threat value of 

the possible unknown time course, unknown aetiological factors and unknown possible consequences 

of clinical pain (Moseley et al., 2005).  Additionally, research into experimental pain is vulnerable to 

self-selection bias due to the nature of the investigation and the experimental conditions (Malone, 

Nicholl, & Tracey, 2014).  However, experimental pain is an important surrogate model for conducting 

research on clinical pain (Pryseley et al., 2009) and this is a paradox that is common to all 

experimental pain research.   

Conclusion 

This literature review provides the basis for an investigation into the characteristics and magnitude of 

left-right discrimination latency changes during acute experimental pain.  The effect of acute 

experimental pain on mental motor imagery has received a limited amount of research attention and a 

more thorough understanding in this area would be useful as the potential outcomes offer intriguing 

clinical possibilities.  For instance, the results of this investigation may inform the development of a 

tool that could provide a quantitative biomarker to be used in conjunction with current pain scales and 

psychosocial assessments to create a cluster of findings that may improve the accuracy of pain state 

diagnosis.  Thus, a diagnosis of chronic pain would not be based on inconsistent definitions of 

symptoms and chronicity, but possibly on a quantifiable clinical measure of neural change.  The 

potential incorporation of quantitative measures into chronic pain diagnosis is also in line with the 

progression of modern pain theories and the possible future classification as chronic pain as a 

disease entity.  Research into the neurophysiological basis of pain has created a number of 

opportunities to improve pain diagnosis and treatment, and hopefully, enable practitioners to start 

intervention and treatment protocols to try to reduce the negative impact that acute and chronic pain 

has on sufferers and the burden of chronic pain in healthcare systems.     
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Abstract 

Background:  Acute experimental pain appears to affect left-right discrimination latency.  This 

phenomenon is an interesting observation as it highlights an effect of pain on the cortex that may 

have potential significant clinical importance as an assessment of pain state.  However, this effect has 

received relatively little attention detail to date (only two studies, n = 35).  A more thorough 

understanding of the magnitude and characteristics of this phenomenon is needed before further 

steps can be taken in this area. 

 

Objective:  This study aims to closely replicate previous studies that have investigated response 

latency for left-right discrimination judgements during acute experimental pain.   

 

Participants:  A sample of 22 (n = 11 female, n = 11 male) right-handed participants took part in this 

study.  All participants were free from pain, analgesia use, pain-related conditions, upper limb 

trauma/conditions, visual impairment and dyslexia. 

 

Methods:  During our repeated measures cross-over study, participants completed a hand left-right 

discrimination judgement task before, during and after an experimental pain stimulus was delivered to 

each hand separately.  The experimental pain was achieved using an intramuscular injection of 

hypertonic (5%) saline into the thenar eminence of the left and right hands.  Mean response times for 

the left-right discrimination task were determined and compared for pain location, pain condition and 

image laterality.  Participants were also asked to report the pain intensity at 20 second intervals 

during each left-right discrimination task. 

 

Results:  There was neither an immediate main effect of the pain stimulus on response times (p = 1), 

nor an effect of pain location on response times (p = 0.202).  There was, however, an image laterality 

effect (p = 0.004) which interacted with a right-hand pain location (p = 0.005) but not a left-hand pain 

location (p = 0.515).  The image laterality and pain location interaction was consistent across all pain 

conditions.   

 

Conclusion:  Our results were not consistent with previous hand left-right discrimination response 

latency results.  Our results do not support the attentional or information processing bias hypothesis 

that is currently thought to underpin hand left-right discrimination response latency changes during 

acute experimental pain in the hand.  Our findings may, however, suggest that asymmetrical 

hemispheric function can affect left-right discrimination latency regardless of pain. 

 

MeSH Keywords:  Functional laterality; Hand /*physiopathology; Pain/*physiopathology; 

Pain/chemically induced; Motor Cortex/*physiopathology; Reaction time; Recognition (Psychology)*; 

Visual Analogue Pain Scale 
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1. Introduction 

Pain is a protective mechanism that serves to promote survival (Iannetti & Mouraux, 2010) by creating 

action and protection against damage to body tissue integrity (Moseley, 2003).  Pain is a common 

experience, but it is not understood why some people develop pain states that become persistent and 

complex to manage.  This situation is aggravated by a limited understanding of chronic pain and the 

continuing need for research into the neurophysiology and neuroanatomy of pain (Massieh & Davis, 

2013).  A sizeable amount of literature has explored the effects of pain on cortical processing.  One 

notable aspect is that pain can influence the process of ‘mental motor imagery’ by disrupting 

sensorimotor integration and the working body schema (Moseley, Sim, Henry, & Souvlis, 2005).  The 

body schema is a real-time cortical representation of the body consisting of genetically predetermined 

neural networks, which are continuously updated by sensory input from the periphery (Ionta & Blanke, 

2009; Moseley, 2003).   

 

A common function of the body schema is imagining and imitating real-life movements in a process 

known as ‘mental motor imagery’.  One form of mental motor imagery is left-right discrimination 

judgement where people are asked to view images of limbs and decide if the limb is an anatomical left 

or right.  Research shows that left-right discrimination of limbs incorporates visual and sensorimotor 

processes (Ni Choisdealbha, Brady, & Maguinness, 2011) resulting in activation of the same primary 

sensorimotor cortical areas as actual movement execution (Parsons & Fox, 1998).  During left-right 

discrimination, it has been hypothesised that people make an initial, subconscious selection from the 

possible two responses (left or right), and then use unconscious imagined movements of the 

corresponding limb of the cortical representation of their own body to corroborate the selection and 

confirm accuracy (Parsons, 1987a, 1987b).  Response times for left-right discrimination latency can 

provide a measure of the information processing and sensorimotor integration that underpin mental 

motor imagery (Hudson, McCormick, Zalucki, & Moseley, 2006).   

 

A number of studies have revealed that acute and chronic pain can have dissimilar effects on latency 

of left-right discrimination judgements.  In people with chronic pain, response time latencies for image 

recognition of the affected limb are slower (Coslett, Medina, Kliot, & Burkey, 2010a, 2010b; Moseley, 

2004; Reinersmann et al., 2010; Schwoebel, Friedman, Duda, & Coslett, 2001).  In contrast, people 

experiencing acute pain show slower response times to images of the unaffected limb (Hudson et al., 

2006; Moseley et al., 2005).  This difference has generated speculation on the plausibility of left-right 

discrimination latency as an objective marker for clinical pain states (Elsig et al., 2014; Schwoebel et 

al., 2001), and subsequently, has raised questions regarding the mechanisms that underpin these 

changes.  

 

During acute experimental pain, it has been proposed that an immediate attentional or information 

processing bias is created during left-right discrimination tasks (Hudson et al., 2006; Moseley et al., 

2005). That is, due to the threat value of acute pain, participants are more likely to choose the 
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laterality corresponding to the painful limb as their initial subconscious response.  The subsequent 

correction and reconfirmation of an incorrect response causes delayed latency for images of the 

unaffected limb (Hudson et al., 2006).  In contrast, central sensitisation in chronic pain is thought to 

disrupt the cortical representation of the affected body part, thus reducing left-right discrimination 

ability of corresponding images (Coslett et al., 2010a, 2010b; Fiorio et al., 2007; Reinersmann et al., 

2010; Schwoebel et al., 2001).  As only a small number of studies have investigated the effects of 

acute experimental pain on response time latency, there exists an opportunity to obtain a more 

thorough understanding of the magnitude and characteristics of left-right discrimination latency during 

acute experimental pain.  Additionally, exploration of this phenomenon could provide insight into the 

plausibility of left-right discrimination latency as a measure that may be a correlate of the neural 

transition from acute to chronic pain (Coslett et al., 2010b; Schwoebel et al., 2001).   

 

The assessment of left-right discrimination latency during acute experimental pain can be conducted 

using intramuscular injection of hypertonic saline which induces a standardised, reversible, localised 

pain (Graven-Nielsen, Arendt-Nielsen, Svensson, & Jensen, 1997; Hudson et al., 2006; Loram, 

Horwitz, & Bentley, 2009; Moseley et al., 2005).  The current study aimed to closely follow a previous 

study which found that acute experimental pain in the hand caused delayed latency for left-right 

discrimination responses to images of the non-affected hand (Moseley et al., 2005).  We 

hypothesised that acute experimental pain in the thenar eminence would delay mean response time 

latency images that correspond to the alternate, non-painful, hand.   

 

2. Material and methods 

2.1. Participants 

A convenience sample of 23 people responded to recruitment posters and announcements, met the 

inclusion/exclusion criteria, and were enrolled in the study. All participants gave written informed 

consent prior to participation.  The study was approved by the Health and Disability Ethics Committee 

(Northern A) (Reference 12/NTA/37).  Inclusion criteria were: aged between 18 to 50 years, ability to 

speak and write English, ability to give informed consent, and New Zealand citizen or resident status.  

Exclusion criteria were: presence of orthopaedic, neurological, traumatic or cutaneous conditions of 

the upper limb or neck, pain or analgesia use on the day of testing, dyslexia, significant visual 

impairment, history of fainting or seizures, diagnosis of clotting disease or latex allergy, and presence 

of pain related conditions as determined by the Pain Catastrophising Scale (Sullivan, Bishop, & Pivik, 

1995) and the Modified Somatic Perceptions Questionnaire (Main, 1983) [see Appendix 1.7 for patient 

screening questionnaire and Appendix 1.9 for patient demographic data descriptive statistics].  All 

participants were naïve to the concept of mental motor imagery and left-right discrimination, and to 

the experimental pain stimulus.  All participants were right-handed (range = +60 and +100), as verified 

by the Edinburgh Handedness Inventory Index [see Appendix 1.8 for questionnaire and Appendix 1.9 

for descriptive statistics] (Oldfield, 1971).  One participant withdrew following the first experimental 
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pain stimulus, and full data sets were collected and analysed for n = 22 (n = 11 female, n = 11 male; 

mean ± SD age = 30.2 ± 8.66 years, range = 21 - 49 years).  

 

2.2. Study protocol 

Data collection occurred during two sessions, separated by one week.  For each session, participants 

were randomised to either the left-sided or right-sided pain (‘pain location’) group.  The side to receive 

the initial injection was randomised and participants were instructed to use the non-pain stimulus side 

to input their responses during that session.  Data was collected using a left-right discrimination 

software application (further details below) and a single use of this application is defined as a ‘task’ for 

the purpose of this study.  Participants were familiarised to the left-right discrimination application by 

completing it three times with each hand.  Participants were asked to identify if the images were of left 

or right hands (‘image laterality’) by pressing either the left or right keyboard arrows, and to respond 

as quickly as possible without resorting to guesswork.  There were three pain conditions per session 

(pre-pain, during-pain, and post-pain) and one left-right discrimination task (~4 min duration) was 

completed per condition.  After completing the pre-pain measures, participants received the painful 

stimulus and immediately proceeded to commence during-pain measures.  Participants completed the 

post-pain measures once the pain perception had resolved to 0 out of 10 following a washout period 

of ~5 to 10 minutes.  Each session was conducted by a medical doctor who administered the 

injections, the principal researcher and a research assistant. 

 

2.3. Measuring equipment 

Based on an established experimental protocol (Hudson et al., 2006; Moseley et al., 2005), a custom 

designed software application [see Appendix 1.10] was developed to display a pre-determined 

sequence of images and measure response time latency.  Equal numbers of left and right hand 

images were displayed (anterior and posterior views), that had been rotated clockwise by 0°, 90°, 

180° and 270° [see Appendix 1.11].  Images of feet and cars in similar views and rotated positions 

were also displayed between images of hands [see Appendix 1.11 for clarification]. The application 

displayed images at 4 s intervals in the centre of the computer screen on a blue background (Fig. 1C).  

Response time latency was recorded with an accuracy of 0.08 ms.  Missed images and incorrect 

responses were recorded as errors, and latency times for these errors were removed from the 

analysis. The response time for the image immediately following a missed image was excluded from 

analysis if the response time was less than 500 ms to prevent late responses from being inaccurately 

recorded for the following image.   At 20 s intervals (after 5 images), the application automatically 

displayed a Visual Analogue Scale (VAS) slider arranged as a horizontal axis of approximately 90mm 

(depending on monitor settings) and anchored with the left label ‘no pain’ and right label ‘max pain’ 

(Fig. 1D).  Participants indicated their pain intensity level by holding down the keyboard arrow keys to 

move a pointer along the axis in increments of 1/100.  Data collected from the VAS slider will be 

reported as an arbitrary measure out of 100 for the purposes of this thesis. 
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A B C D 

 
Figure 1 – Image A shows the site of injection of 0.4ml of hypertonic 5% saline solution.  Injection sites were aspirated to 
ensure that the needle had not penetrated a vessel prior to injection of the saline solution.  Image B shows the position of a 
participant who is completing the left-right discrimination software application.  In this instance, the participant is inputting their 
responses with their right hand as their left hand will be receiving the acute experimental pain stimulus.  The keyboard was 
moved to the left side during the right-hand pain tasks so a consistent posture was maintained throughout each task.  Image C 
shows an image presented for judgement in the left-right discrimination application.  Image D shows the VAS slider that 
participants used to input their pain intensity scores. 
 

2.4. Experimental condition protocol 

Acute experimental pain was achieved using a single 0.4ml bolus of hypertonic (5%) saline (Optimus 

Healthcare, NZ) injected intramuscularly into the thenar eminence with a 25G needle and 1ml plastic 

syringe at a depth of approximately 1cm (Fig. 1A).  Participants had the option of application of topical 

anaesthetic (ethyl chloride spray) (Arendt-Nielsen, Graven-Nielsen, Svarrer, & Svensson, 1996), 

however, no participant chose this option.   

 

2.5. Participants position 

Participants sat upright at a computer desk with a comfortable viewing distance of approximately 50-

70cm from the computer screen (Fig. 1B).  They were asked to rest their hands (palm down) on the 

desk with fingers pointing forward and the fingers of the non-painful limb resting on the left and right 

arrow keys of the keyboard in front of them.  Their feet were positioned flat on the floor with toes 

pointing forward.  Participants were instructed to maintain this position throughout the testing 

procedures as alterations in proprioceptive input have been shown to affect left-right discrimination 

latency (Ni Choisdealbha et al., 2011).   

 

2.6. Adverse events  

One participant (female) experienced an episode of vasovagal syncope following the first 

experimental pain stimulus and withdrew from the study.  Participants were sent a follow-up email 

after each session and at one week after the final session.  A number of temporary and minor 

reactions were reported [see Appendix 1.14] however no participants required treatment. 
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2.7. Statistical analysis 

Assumptions of normality were explored with the Shapiro-Wilk test, and sphericity was tested using 

Mauchley’s test. Three-way repeated measures ANOVA (Pain location, Image laterality, Pain 

condition) were conducted to identify main effects and interactions. Bonferroni post-hoc pair-wise 

comparisons were conducted to further explore significant effects.  All statistical analysis was 

performed using IBM SPSS Statistics (v.22 IBM Corp., NY). Unless otherwise stated, all results are 

reported as mean ± standard deviation. Statistical significance was set at p < 0.05.   

 

3. Results 

Analysis of the peak pain intensity ratings for the during-pain condition showed that there were no 

significant differences (p = 0.26) between pain intensity ratings when the pain was located in either in 

the left hand (mean = 50.5 ± 24.1) or the right hand (mean = 46.9 ± 19.0).  Therefore, the data for 

both hands have been pooled to show the following mean values for peak pain intensity in each pain 

condition; pre-pain condition (mean = 0.34  ± 1.33), during-pain condition (mean = 48.7 ± 21.56), and 

post-pain condition (mean = 2.2 ± 4.92) (Fig. 2A).  Mean peak pain intensity ratings recorded in the 

during-pain conditions were significantly higher (p < 0.001) than those recorded in the pre-pain 

condition and post-pain conditions.  There was also a significant difference between the mean pain 

intensity ratings for the pre-pain conditions and post-pain conditions (mean difference = 1.86, 95% CI 

= -3.299 to -0.421, d = 0.515, p = 0.012), however, a difference of 1.86/100 was not considered to be 

of practical importance and not practically different from the pre-pain condition.  Indeed, comparing 

left hand pain during the pre-pain and post-pain conditions was not significantly different (mean 

difference = 2.44, 95% CI = -5.212 to 0.332, d = 0.643, p = 0.098), as was right hand pain during the 

pre-pain and post-pain conditions (mean difference = 1.28, 95% CI = -3.728 to 1.168, d = 0.370, p = 

0.573).  A within-subject test showed that there was no interaction between the location of the pain 

stimulus and the pain condition (p = 0.26).   
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A B 

 
Figure 2 – Graph A shows the mean peak pain intensity ratings that were recorded during each pain condition for each pain 
location (left and right thenar eminence).  Graph B shows the faster mean response times during the post-pain condition. 

 

A comparison of the mean response latency (for all images and pain locations) during the pre-pain 

condition (mean = 1.779 ± 0.347s) and the during-pain condition (mean = 1.776 ± 0.352s) revealed 

that there was not a significant difference between the means of these pain conditions (mean 

difference = 0.003s, 95% CI = -0.071 to 0.077s, d = 0.009, p = 1).  A similar comparison of the mean 

response latency (for all images and pain locations) during the during-pain condition and the post-pain 

condition (mean = 1.700 ± 0.352s) revealed that there was a significant difference between the means 

of these pain conditions.  The difference between the means of the during-pain condition and the 

post-pain condition was 0.076s (95% CI = 0.004 to 0.147s, d = 0.217, p = 0.036).  The difference 

between the means of the pre-pain condition and the post-pain condition (for all images and pain 

locations) was significant (mean difference = 0.079s, 95% CI = 0.027 to 0.131s, d = 0.226, p = 0.002) 

(Fig. 2B).  There was no significant main effect of pain location when the mean response time latency 

for all conditions and all images of the left-pain group (mean = 1.718 ± 0.366s) or the right-pain group 

(mean = 1.785 ± 0.361s) were compared (mean difference = 0.067s, 95% CI = -0.039 to 0.172s, d = 

0.184, p = 0.202).  Pairwise Bonferroni comparison of mean response latency for left and right images 

across all pain conditions (pre-pain, during-pain, or post-pain) and all pain locations (left and right) 

revealed significant main effects of image laterality where participants responded faster (mean 

difference = 0.075s, 95% CI = 0.026 to .0123s, d = 0.216, p = 0.004) to images of right hands (mean 

= 1.714 ± 0.356s) than left hands (mean = 1.789 ± 0.338s).   

 

When the data was separated according to pain location, the main effects of image laterality were 

altered and showed an interaction between image laterality and pain location.  For all response 

latency data collected during each left-right discrimination task (pre-pain, during-pain, post-pain) 

related to a right pain location, comparison of mean response time latency for images of right hands 

(mean = 1.722 ± 0.385s) to pictures of left hands (mean = 1.847 ± 0.375s) revealed a significant 

mean difference of 0.125s (95% CI = 0.043 to 0.207s, d = 0.329, p = 0.005) (Fig. 3A).  This difference 
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was not observed when mean response latency for images of left hands (mean = 1.730 ± 0.347s) and 

right hands (mean = 1.706 ± 0.399s) collected during all conditions (pre-pain, during-pain, post-pain) 

related to a left pain location were compared (mean difference = 0.025s, 95% CI = -0.053 to 0.102s, d 

= 0.0634, p = 0.515) (Fig. 3A).  Further consideration of the image laterality and pain laterality data 

during each of the three pain conditions showed that the image laterality and right handed pain 

interaction occurred during each pain condition (Fig. 3B and 3C and 3D).   

 

A 

 

 

B 

 

C 

 

D 

 
Figure 3 – Graph A shows the main effects of image laterality across all pain locations and all pain conditions.   
 
Graph B shows the interaction between image laterality and pain location during the pre-pain condition.  During right hand pain, 
mean response latency for images of right hands (mean = 1.75 ± 0.39s) was faster than mean response latency for images of left 
hands (mean = 1.87 ± 0.39s) (mean difference = 0.111s, 95% CI = 0.004 to 0.218s, d = 0.308, p = 0.043). 
 
Graph C shows the interaction between image laterality and pain location during the during-pain condition.  During right hand pain, 
mean response latency for images of right hands (mean = 1.74 ± 0.40s) was faster than mean response latency for images of left 
hands (mean = 1.88 ± 0.40s) (mean difference = 0.142s, 95% CI = 0.032 to 0.253s, d = 0.350, p = 0.014).  
 
Graph D shows the interaction between image laterality and pain location during the post-pain condition.  During right hand pain, 
mean response latency for images of right hands (mean = 1.68 ± 0.41s) was faster than mean response latency for images of left 
hands (mean = 1.80 ± 0.40s) (mean difference = 0.122s, 95% CI = 0.001 to 0.243s, d = 0.296, p = 0.049). 
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Comparison of mean response latency for images of the same laterality for each pain location were 

not significantly different between pre-pain and during-pain conditions (Table 1 and Fig. 3A and 3B).  

The post-pain condition showed a significant difference in mean response latency during right and left 

handed pain for left images only (mean difference = 0.137s, 95% CI = -0.261 to -0.014s, d = 0.37, p = 

0.031) (Table 1 and Fig. 3D).   

 

Table 1 - Comparison of mean response latency (s) for all pain conditions, all images and all 

pain locations using three-way repeated measures ANOVA and Cohen’s d effect sizes. 

Pain condition Pre-pain During-pain Post-pain 

Image laterality L R pb L R pb L R pb 

Left hand pain 1.78 (0.36) 1.71 (0.42) .143 1.75 (0.41) 1.74 (0.41) .907 1.66 (0.35) 1.67 (0.42) .903 

Right hand pain 1.87 (0.39) 1.75 (0.39) .043 1.88 (0.40) 1.74 (0.40) .014 1.80 (0.40) 1.68 (0.41) .049 

pa 0.217 0.605 - 0.113 0.959 - 0.031 0.90 - 

Mean difference 

(95% CI) 

0.081 

(-0.215-

0.052) 

0.044 

(-0.132-

0.22) 

- 

0.132 

(-0.034-

0.30) 

0.004 

(-0.153-

0.161) 

- 

0.137 

(-0.261-  

-0.014) 

0.01 

(-0.167-

0.148) 

- 

Effect size (d) 0.24 0.10 - 0.32 0.00 - 0.37 0.02 - 

Notes: response times are measured in s and are presented as mean (SD); L = left; R = right; p = p-value; p a = p-values for the mean 
difference when comparing same image laterality when related to different pain locations; p b = p-values for the mean difference when 
comparing different image laterality when related to the same pain locations. 

 

4. Discussion 

The current study aimed to replicate previous findings that acute experimental hand pain resulted in 

delayed response times to images that corresponded to the unaffected hand during a left-right 

discrimination task.  Contrary to expectations, the left-right discrimination latency alterations observed 

in the current study were somewhat dissimilar in characteristics to those of previous studies (Hudson 

et al., 2006; Moseley et al., 2005) in that the location of pain did not create any significant image 

laterality specific changes.  Our findings are in contrast to the current ‘attentional bias’ theory that is 

proposed to underpin the cortical mechanisms of altered left-right discrimination latency changes 

during acute pain (Hudson et al., 2006; Moseley et al., 2005).   

 

Not only were pain location-specific effects not observed, the response latency changes that occurred 

during our study were not immediate or concurrent with the pain experience, nor were they related to 

the side of pain.  Significant decreases in mean response latency overall were only observed during 

the post-pain discrimination tasks which were conducted following a washout period and cessation of 

pain symptoms.  This unanticipated interval between pain stimulus and latency changes in our study 

is intriguing.  This interval appears to refute the mechanism of an attentional bias or information 

processing bias, owing to the perception of pain, that has been proposed to explain the left-right 

discrimination latency changes observed during acute experimental pain (Hudson et al., 2006; 
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Moseley et al., 2005).  An attentional or information processing bias would be expected to occur with 

pain symptoms; however, our results show that changes in response latency takes some time to 

occur, and does not require the simultaneous perception of pain.   

 

It is not clear why the acute experimental pain was not associated with immediate response latency 

changes.  Also, it is not clear why the response latency changes were deferred to the post-pain 

condition.  Our methodology of acute experimental pain was similar to that of previous studies 

(Hudson et al., 2006; Moseley et al., 2005) and the participants’ pain intensity ratings indicate 

successful generation of pain symptoms (Fig. 2A).  Additionally, a washout period that was sufficient 

to eliminate conscious pain symptoms separated the during-pain and post-pain tasks.  A learning 

effect cannot be ruled out in this instance as repeated post-pain measures were not conducted to 

determine when mean response latency returned to pre-pain levels, however, the repeated measures 

design and inclusion of task familiarisation protocols reduces the likelihood of this.  Furthermore, a 

learning effect could be anticipated to occur earlier in the session (i.e., between pre-pain and during-

pain conditions) rather than later, as learning effects tend to plateau over time.  In retrospect, the 

washout period was inadequate to return latency measures to pre-pain levels as has been suggested 

that several pain-related adaptations can persistent following pain cessation, reflecting neuroplastic 

changes that extend beyond the perception of pain (Le Pera et al., 2001; Schabrun & Hodges, 2012).  

However, this persistence of pain-adaptation manifestations does not explain why no effect of the 

pain was seen in the during-pain condition. 

 

A potential interfering factor could be that, during the pre-pain and during-pain conditions, our 

participants may have experienced apprehension and fear related to the experimental pain stimulus.   

If this is true, then these emotions would be expected to decrease following cessation of the 

experimental pain symptoms and subsequently facilitate the improved left-right discrimination ability 

that we observed.  Expectation of pain has been shown to have a similar effect to pain, in that both 

create a similar disruption to left-right discrimination latency (Hudson et al., 2006).  However, this 

evidence only indirectly offers some support to our finding as we did not observe an attentional or 

information bias processing towards the threatened and subsequently painful limb.  Rather, an overall 

impairment in left-right discrimination for all images was observed (Fig. 2B and 2C).  So it is yet to be 

determined if the deferred changes in mean latency response times are a likely effect of the 

experimental pain stimulus with a yet to be determined neurophysiological basis or the result of an 

interfering factor.  Nonetheless, the lack of left-right discrimination latency changes in the during-pain 

condition is in contrast to other results (Hudson et al., 2006; Moseley et al., 2005), and may indicate 

that conscious pain symptoms are not necessary, and may only be partly related to, performance 

during left-right discrimination tests. 

 

The observed main effect of delayed latency changes must also be considered in light of the 

characteristics of the changes and interactions with other factors.  Another main effect was that 

participants showed a predisposition to faster response times for right-hand images than left-hand 
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images across all experimental conditions (pre-pain, during-pain, post-pain).  A similar laterality effect 

has been reported in previous studies (Ionta & Blanke, 2009; Ionta, Fourkas, Fiorio, & Aglioti, 2007; 

Parsons, 1987b), and research into the effects of lateralisation show that right handed participants are 

facilitated in recognising images of right hands (Ni Choisdealbha et al., 2011).  Therefore, this main 

effect is not surprising as the participants in our study demonstrated a high degree of right-handed 

lateralisation [see Appendix 1.9].  Conversely, this finding may not represent a normal phenomenon 

as there are contrasting results which show no significant difference between mean response times 

for recognition of left and right hands (p = 0.42) (Hudson et al., 2006).  Therefore, this main effect was 

explored further. 

 

Additional consideration of the data by pain location (right-hand pain or left-hand pain) revealed that 

the image laterality effect only reaches significance for response times that are associated with a 

right-hand pain location (Fig. 3A).  Mean response times associated with a left-hand pain location 

show no significant difference between image laterality.  Overall, it appears as though mean response 

times are consistent for right-hand images between pain locations, and a delay in response times for 

left-hand images occurs during right-hand pain only.  However, separating the data across pain 

conditions (pre-pain, during-pain, post-pain) shows that the interaction between right-hand pain 

location and image laterality was a common occurrence during each condition (Fig. 3B and 3C and 

3D.).  Therefore, the characteristics of the pre-existing interaction between pain location and image 

laterality were unchanged across all pain conditions, despite the main effect of faster mean response 

times that was observed during the post-pain condition. 

 

The observation that the image laterality and pain location interaction is similar across all pain 

conditions is challenging to interpret.  A clear impairment of performance was observed for images of 

left hands across all right-hand pain conditions, but, in the course of the pre-pain and post-pain tasks, 

the participants were not experiencing any pain symptoms.  Pain appears to not be the cause of this 

effect.  The single factor that changed between left-hand pain and right-hand pain was that 

participants were inputting their responses with the hand that would not receive the injection on that 

day.  Therefore, during all right-hand pain conditions, participants were using their left hands to input 

their responses, and this factor appears to have resulted in delayed response latency to images of left 

hands, regardless of pain.   

 

This observation was not expected as the method for inputting the response was similar to previous 

studies (Hudson et al., 2006; Moseley et al., 2005).  One possible explanation for this effect is that our 

participants were right handed and the non-dominant left hand exhibited slower reaction times.  

However, our data showed that there was no significant difference between mean response latency 

for right-hand images when inputting with either hand, therefore demonstrating no difference in input 

speeds between the right and left hand (Fig. 3A).  Additionally, there is a large amount of 

contradictory evidence that shows that the dominant right hand is superior to the left hand when 

considering reaction times (Barthelemy & Boulinguez, 2001; Mieschke, Elliott, Helsen, Carson, & 
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Coull, 2001; Nisiyama & Ribeiro-do-Valle, 2014).  Another potential explanation for this discrepancy is 

that use of the left hand to input responses by our right-handed participants may have resulted in a 

distraction or disruption in sensorimotor integration and left-right discrimination that was specific to 

images of left hands.  Conversely, our explicit instructions not to move the dominant right hand may 

also be hypothesised to have a similar effect.  The mechanism underlying the observed effect is not 

clear and only speculation is possible at this point.  

 

Although not directly explanatory of our findings, it is interesting to consider the implications of 

interhemispheric inhibition during motor control.  It has been shown that right handed people have a 

distinct asymmetry in inhibitory circuits that favours a stronger inhibitory control by the left hemisphere 

over the right hemisphere (de Poel, Peper, & Beek, 2007; Kagerer, Summers, & Semjen, 2003; 

Kobayashi, Hutchinson, Schlaug, & Pascual-Leone, 2003; Reid & Serrien, 2012).  It is then suggested 

that this asymmetry can cause difficulty and interference when uncoupling movement patterns for 

asymmetric bimanual activities because co-activation of the primary motor cortices leads to a more 

pronounced inhibition of the non-dominant hemisphere (Reid & Serrien, 2012).  Furthermore, complex 

unimanual tasks also activate both primary motor cortices, again with an asymmetrical magnitude that 

favours the left hemisphere control over the right hemisphere (Stinear, Fleming, & Byblow, 2006; van 

den Berg, Swinnen, & Wenderoth, 2011).  Therefore, the act of inputting responses with the left hand 

the act of inputting responses with the left hand while concurrently discriminating between left and 

right hand images (a complex mental motor imagery task) would result in co-activation of the motor 

cortices and stronger interference and inhibition of the function of the non-dominant hemisphere.  This 

may explain the left-hand image specific impairment seen in our results.  Correspondingly, using the 

same concept, the act of using the right hand to input responses while the left is held motionless may 

not result in the same degree of bilateral motor cortex co-activation and asymmetrical inhibition, thus 

potentially suggesting a possible underlying neurophysiological mechanism of our results. 

 

In summary, our hypothesis that acute experimental pain in the thenar eminence would delay mean 

response time latency to images that correspond to the alternate, non-painful hand was not supported 

by the findings.  The results of our study highlight the individualistic nature of pain and its clinical 

effects, and as such, the difficulties inherent in its quantification.  Our results also raise negative 

implications regarding the plausibility of the attentional or information processing bias that is currently 

thought to underpin left-right discrimination changes during acute experimental pain.  At present, the 

specific functional significance of our findings cannot be established and only speculation regarding 

the mechanism is possible.  Future left-right discrimination research may benefit from utilising a verbal 

recording method (Ionta, Perruchoud, Draganski, & Blanke, 2012) to record judgement responses.  

This format may eliminate the potential confounding factors of hand dominance when inputting 

responses.  Additionally, further research on left-right discrimination strategies in left and right handed 

participants may begin to address some of the points raised by the findings of this study.  
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Section 3: Appendices 
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1.2. Health and Disability Ethics Committees renewal letter 
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1.3. Health and Disability Ethics Committees amendment 
approval letter 
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1.4. Participant information sheet 
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1.5. Participant consent form 
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1.6. Participant recruitment poster 
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1.7. Participant screening questionnaire 

This questionnaire was used to collect patient demographic data and to inform participant selection by 

collecting information relevant to the inclusion and exclusion criteria of the study.  The Pain 

Catastrophising Scale (Sullivan, Bishop, & Pivik, 1995) and the Modified Somatic Perception 

Questionnaire (Main, 1983) were used to identify potential participants who may have been at risk of 

experiencing an adverse event as a result of the experimental pain stimulus [see Appendix 1.9 for 

descriptive statistics]. 
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1.8. The Edinburgh Handedness Inventory 

The Edinburgh Handedness Inventory was administered to assess the degree of handedness of 

participants.  The descriptive statistics resulting from analysis of data from this questionnaire are 

located in Appendix 1.9. 
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1.9. Participant demographic data  

Summary of demographic data 

Gender 

 Male 11 

 Female 11 

 n 22 

Ethnicity 

 NZ European 17 

 NZ Maori 1 

 Other European 3 

 Other Asian 1 

 n 22 

Age 

 Mean 30.2 

 SD 8.66 

 Std Error Mean 1.85 

 Median 28 

 Min-Max 21 - 49 

 n 22 

Pain Catastrophising Scale results 

 Mean 5.9 

 SD 4.19 

 Std Error Mean 0.94 

 Median 5 

 Min-Max 0 - 14 

 n 20 

Modified Somatic Perceptions Questionnaire results 

 Mean 16.79 

 SD 10.37 

 Std Error Mean 2.32 

 Median 15.38 

 n 20 

Edinburgh Handedness Inventory results 

 Mean 0.924 

 SD 0.102 

 Std Error Mean 0.0218 

 Median 0.975 

 n 22 

n represents number of patients contributing to summary statistics, SD 

= standard deviation. 
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1.10. Left-right discrimination application 

An in-house left-right discrimination software application was designed by the researcher and 

supervisors, and produced by an external software designer.  Initial pilot testing of the application 

revealed problems with accuracy of latency measurement (was corrected to 0.06ms accuracy) and 

difficulties obtaining the VAS readings (was corrected with a sliding scale).  The application is 

designed to be adaptable to different types of left-right discrimination tasks by allowing any number or 

type of images and changes to the scheduling (see Screenshot 3 below for details). 

 

Pilot measurements of left-right discrimination latency showed a learning effect which did not plateau 

after approximately 8 repetitions of the task (approximately 1 hour of use).  Thus, habituation to 

reduce this effect was problematic during data collection due to time constraints so a randomised 

crossover design was used to determine order of pain locations.   

 

These screenshot images are intended to show the function of the left-right discrimination application.   

 

Screenshot 1:  This initial textbox allows participants to input their 

user name and the condition; the location of the experimental pain 

stimulus (left or right) and the pain condition (pre-, during- or post-

pain).  These details are used to identify the response time data 

sets that are collected once the task has finished. 

 

Screen shot 2:  This image shows the starting point of the image 

presentation.   This image appears between each hand image for 

one second during the ‘blank time’ section.   

 

Participants indicated their responses to the images that followed 

by pressing the arrow keys on the keyboard. 
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Screenshot 3:  This screenshot shows an example of an image 

presented for left-right discrimination judgement.  The scheduling is 

able to be changed.  For example, ‘time between images’ represents 

the duration of time the image is presented for judgement before 

loading the next image.   The ‘number of images’ is how many 

images will be presented for judgement; this can be set to show 

each image once or multiple times.  The ‘session length’ represents 

the duration of time between automatic requests for a VAS rating.  

“Blank time’ represents a pause between images.  The ‘number of 

sessions’ represents the number of times a VAS rating will be 

requested.  The pain levels represent the minimum and maximum 

values that will be presented on the VAS image.  The sequence of 

images may also be set by using a sequential naming pattern or 

randomised by checking the randomise images box. 

 

 

Screenshot 4:  The VAS sliding scale allowed users to 

indicate their pain intensity by using the arrow keys to 

move the marker.  An automatic VAS request was timed to 

occur every 20 seconds to monitor the temporal profile of 

the experimental pain stimulus. 
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1.11. Images of hands 

These hand images were presented for judgement during the left-right discrimination task.  The 

images were developed from photos of a single hand (anterior and posterior view) which had any 

distinctive or distinguishing marks removed using Photoshop.  The images were then mirrored to 

create identical left and right versions.  Each version was then rotated by 90°, 180° and 270° to create 

a bank of 16 images.   

 

Pilot measurements of left-right discrimination latency of the left-right discrimination application 

showed that increased anatomical difficulty of the hand position resulted in increased response times 

during the task.  This observation is in line with results from other studies (Ionta & Blanke, 2009; Ionta 

et al., 2012; Moseley et al., 2005).   Additionally, the intensity of the experimental pain created by 

hypertonic saline has been shown to peak at 30 seconds following injection and continue for ~7 

minutes (Moseley et al., 2005).  Therefore, the order of images presented during the left-right 

discrimination task was prearranged to consist of the simplest images in the first 30 seconds followed 

by the remainder of the images in decreasing order from most difficult as the experimental pain was 

expected to decrease.  This arrangement was intended to provide an order of images that would be 

somewhat standardised at approximately similar levels of experimental pain intensity to facilitate more 

accurate response time comparison. 
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The original proposal for this research project included objectives regarding investigation into 

response latency data for left-right discrimination of images of a foot/ankle (a limb that is distant to the 

experimental pain stimulus) and of a car with the left or right door open (a non-corporeal object).   

According to previous studies, the cortical processes that underpin left-right discrimination latency of 

images of body parts and non-body objects is different, therefore, the effects of pain on response 

latency for these different images are dissimilar (Fiorio et al., 2007).   The images of feet and cars 

were displayed between images of hands during the left-right discrimination task and the total number 

of images judged during each task was 48.  However, due to the size requirements for the purpose of 

this thesis, the response latency data for non-hand images was removed and not analysed or 

reported.   
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1.12. Piloting of the experimental pain stimulus 

Pilot testing of the experimental pain stimulus was conducted by the researcher and supervisors to 

ensure generation of adequate pain intensity and duration (data not formally collected or analysed).  

Initial trials of 0.4ml 5% hypertonic saline resulted in adequate pain intensity, however, the duration of 

pain symptoms only lasted for ~3 minutes which is shorter than has been reported previously 

(Moseley et al., 2005).  This duration was insufficient to allow each image to be judged multiple times 

during the left-right discrimination task as planned.  Further trials of 0.4ml 7.5% and 0.4ml 10% 

injections revealed that the higher concentrations of hypertonic saline increased the pain duration 

somewhat (~2 minutes longer) without increasing the pain intensity.  Unfortunately, the higher 

concentrations of hypertonic saline created a minor tenderness at the injection site which lasted 

approximately 24 hours.  This side effect meant that it was not appropriate to use the higher 

concentrations of hypertonic saline.  Therefore, the 0.4ml 5% hypertonic saline injections were used 

during the experimental procedure and the duration of the left-right discrimination task was shortened 

to match the length of the pain symptoms. 

 

The following link shows the principal researcher receiving a 0.4ml 5% hypertonic saline injection to 

the right thenar eminence; http://youtu.be/cW6icafUCTE 

 

 

 

 

 

 

  

http://youtu.be/cW6icafUCTE
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1.13. Injection aftercare information sheet 

This injection aftercare information sheet was provided to all participants following each data 

collection session. 
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1.14. Adverse events  

One participant (female) experienced an episode of vasovagal syncope follow the first experimental 

pain stimulus and withdrew from the study.  She did not experience any lasting side effects.   

 

Participants who completed each data collection session were sent a follow-up email after each 

session and at one week following the final session.  A number of minor reactions were reported.  

Participants who reported side effects were spoken to and examined by the principal researcher and 

a supervisor.  The General Practitioner who performed the injections was briefed regarding these 

reports and determined that all were minor side effects consistent with a needle puncture wound: 

 

- A report of spontaneous mild aching in the right thenar eminence (injected in first session) 

which was localised to the muscle belly and aggravated by palpation and resisted muscle 

tests.  This occurred five days after the second session and lasted a few hours.   

- Slight bruising at the injection site in two participants which lasted approximately two days. 

- A transient sharp pain in the left thenar eminence on active thumb abduction that occurred 

intermittently for one week following the second session.  

 

No participants required treatment during or following the research project.  There were no reports of 

long term or serious adverse events following the experimental pain stimulus.   
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1.15. Brain Research: Instructions for authors 
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