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Abstract. Land management and planning is essential to assist the eco-
nomic growth, sustainable resource use and environmental protection of
a city. This paper describes a novel approach to automatic encroach-
ment detection to assist in land management decision making. The ap-
proach begins with training the agent to identify and understand the
land cover/use features (such as buildings, parks, trees and roads) that
are predominant in the region of interest, and carries out segmentation
on the park data using the intelligent agent developed from the training
samples. Experiments on park images from Auckland New Zealand show
the effectiveness of the proposed approach.

1 Introduction

The use of public land for private purposes has been identified as a problem
affecting public parks in the Auckland region. Dacey et al. [1] proposed a par-
ticipatory approach to the problem of encroachment. This approach involves
visiting each park with GPS equipment to obtain data on the actual physical
boundary. The data collection proved to be very time-consuming so a quicker
way of identifying parks with likely encroachment is needed.

Land encroachment is defined as the change in the perceived or actual use
of land from either (a) human caused encroachment: the use of public land
for private purposes, or (b) environmental caused encroachment: the change
in the ability of land for its original purpose from an environmental change.
This paper examines the use of digital image analysis in automatically detecting
encroachment on public parks in two specific areas in Auckland, New Zealand.

When dealing with encroachment it is necessary to differentiate between land
cover change and land use change. For example if an area of grassland belonging
to a public park has been fenced off by the resident of a property that is adjacent
to the park, the land cover of the majority of the grassland has not changed but
its land use has changed from public to private. Detection of this type of change
requires the use of high resolution data as features such as fences are hard to
detect and/or difficult to distinguish from features, such as paths, that are not
indicative of encroachment.

In practice, there are 4 general types of encroachment studied:

1 Permanent land cover/use change. For example a building has been built
either wholly on the park or partially on it.
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2 Permanent land use change only. For example Public Park area has been
fenced off so is no longer accessible to public but land cover has not changed
(i.e. land cover is still grass).

3 Temporary land cover/use change. For example the park (or part of the
park) has been used as a garbage dumping site in a way such that it can no
longer be used by the public as a park.

4 Physical boundary concealed by land cover. For example a boundary fence
has been moved, or removed completely, in an area that is obscured by dense
vegetation.

(c)

Fig.1: The four types of encroachment. (a) Permanent land cover/use change;
(b) Permanent land use change only; (¢) Temporary land cover/use change; and
(d)Physical boundary concealed by land cover.

A new approach is in demand because the existing methods are unsuitable
for our specific needs, and the applications examined are not reproducible in the
New Zealand context. The strengths of the proposed method is that it can detect
the types of land encroachment identified above. Additionally, it is suited to the
type of land cover (urban and rural mixed) found in Auckland, as we design,
build and test a solution for our specific purpose. Although trees naturally form
part of a public park, they need to be differentiated because they can blur the
boundary of a park and can obscure encroachment.
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2 Methodology

In this section, we propose a new agent-based image solution to land-encroachment
detection. As seen in the literature, agent-based image analysis has been used in
a variety of applications such as range-image segmentation [2], and off-road ve-
hicle guidance, [3]. The advantage offered by such a solution includes: (1) image
processing parallelization; and (2) the flexibility to concentrate on either spatial
or temporal changes. A review of agent-based image segmentation can be found
in [4].

The flowchart in Fig. 2 shows an outline of the proposed land encroachment
detection approach. The aim of the approach is to detect any changes between a
pair of multi-temporal images, which we identify as source image Iy and target
image I in this paper. The principle of the approach is that the more that an
agent learns about Iy, the more accurate any change detection (against Ip) will
be.

Training data
samples

Land Cover Feature
Extraction

Obtain park
image data (1)

Training land cover

Park GPS data change detection model

Parkimage Land Cover Feature
data (i) Extraction

No encroachment
detected

Output the changes
detected

Determine degree/ size
of encroachment
Evaluate impact/ cost/
scale of encroachment

Fig. 2: Flowchart of proposed approach

To learn as much prior knowledge as possible, about Iy, in terms of the type
of land cover, additional image data is collected for training the agent with the
knowledge of 5 land cover patterns such as Grass, Buildings, Trees, Fences and
Roads, which represent the land cover/use characteristics that are most likely
to be found in or around public parks.

The agent with the prior knowledge of basic land cover is expected to learn
the source image Iy incrementally (i.e. incremental learning). When performing
land encroachment detection, the target image I; is processed by the agent to
detect the change against Ij. If encroachment has been detected then the size of
the encroachment can be calculated. Then the risk factor of the encroachment is
examined using the size of the encroachment and the rateable value of the land
that has been encroached upon.

Details on how the approach is carried out are given next.
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2.1 Land Cover Feature Extraction

The land cover of a public park is usually grassland. However, in some cases,
the types of land cover in a public park can include buildings, play grounds,
paths and roads. The automatic detection of encroachment has to be able to
take spatial co-ordinates into consideration.

For better understanding of the image characteristics, we apply first an image
processing method - Gabor filter - to enhance images characteristics, such as
texture and contour information. A general Gabor filter function is expressed as

G(x,y; X, 0,1,0) = exp <x/2t;y/2> exp (z <27Ti/ + w)) ; (1)

{x’] B { cos(f) sin(@)] [m] @)
Y| | —sin(@) cos(@) | |y |’

and A represents the sinusoid’s wavelength, 6 represents the orientation, 1 is the
phase offset, and o denotes the spread of the Gaussian window [5].

Given a set of orientations 6%, where t = 1,2,..., T, and according to (1) and
(2), using an image I as input, we obtain T different images Gét, which are
the data representatives of these Gabor filtered images in T orientations. For
example, let the 2-D image I with a size of M x N be processed by Gabor filter,
and the magnitude of complex-valued subbands is denoted as

where

Ghe = {mp(m,n)[1 <m < M,1<n<N,and t =[1,2,..,T]}, (3)

where Gét is a set of real-valued 2-D subbands signals, representing the mag-
nitude of complex-valued wavelet coefficients obtained at the direction 6. The
magnitudes of each directional subband’s coefficients are computed and collec-
tively denoted by Gé‘t’ and Géi for the multiple temporal images Iy and I;.

2.2 Encroachment Detection by Land Cover Change Detection

Knowledge discovery from the source image Iy. In order to learn content
composition of the collected data Dy for Iy, we employ a clustering algorithm to
discriminate different image contents from each other and group similar contents
together. To maximize the flexibility of our method, the general mathematic
definition of clustering is shown below.

Given Dy = {Dy(r)|1 < r < R}, C = {cg|l < k < K} denote the set of
K clusters’ core vectors, and Ry represents the number of vectors assigned to
k-th cluster, initially, ¥ = 1 and ¢ = Do(1). Normally, clustering is to assign
data that are more “alike” into one cluster [6]. To determine the word “alike”,
a function for measuring similarity among data can be formulated as (2.2),

0 if two vectors a and b are similar
1 otherwise

Similarity(a, b) = { (4)
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According to (2.2), we compare the similarity between Dy and C, for each
Dy(r) and ¢k, where r =1,2,...,Rand k=1,2,... K.

it Similarity(Do(r),ck) = 0, assign Do(r) to kth cluster, and let ¢, =
W, otherwise Similarity(Do(r), ck) = 1, then assign Dy(r) to (k+1)th
cluster, and let cx41 = Do(r). Hereafter, let » = 1 we can repeat this process
until the last input vector Dy(R) has been assigned into one cluster. At the
end of clustering, the cluster labels Yy = {1,2,..., K} and Dy = [Do, Yp] can be
obtained.

As mentioned above, this stage is flexible via selecting various clustering
algorithms, since there exist a variety of clustering techniques. In this research,
K-mean clustering, as the first choice, is utilized.

For the purpose of storing Iy as small size knowledge instead of keeping the
same size of Iy, machine learning model is employed.

Weighted incremental linear proximal support vector machine (wlncLPSVM)
is designed for solving class-imbalance problem. It is suitable for our study be-
cause of its following properties: 1) it is an incremental learning algorithm ca-
pable of learning a huge size input image piece by piece; 2) in contrast to the
traditional incremental LPSVM, the samples from positive and negative are pro-
cessed separately in wincLPSVM which makes it easy to observe the effect of
one step incremental learning.

The core model used in this work is a matrix component in wincLPSVM
model namely M which condenses the knowledge of positive class. In practice,
we train a Mo* for each object obtained from the objects decomposition on
image Iy (Db). For the kth object in Iy, the model is calculated as

MG* = [DG* —e]" [DG* —e] . (5)

where e = [1,...,1]7. After the training phase, we conduct one step incremental
learning to update M g’“

M§ (r) = MG* + [DS*(r) —e]" [DS*(r) —e] . (6)

using the each sample from data Dy and use the eigenvalue of updated M ’6) k
to measure the influence of incoming sample. By going through all samples in
each object on corresponding model, a range of influences can be obtained for
each object. A range Rangeg k¥ is a closed interval defined by the maximal and
minimal eigenvalues as

RangeS* = [min(eig(M’$*)), max(eig(M’$*))] - (7)

The incremental learning is conducted on learning the model M§*, so the

image Iy can be learned piece by piece. For example, Dy is separated into N
pieces with 5 objects. There are five Mé)’“ models, and each of them can be

stored in a 20 x 20 matrix. In contrast, Dy is a 154814 x 20 matrix, the stored
model {MOO"‘ |k e [1, 5]} includes five 20 x 20 matrices. Thus the size of stored

knowledge is 154 times smaller than original image dataset Dy.
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2.3 Change Detection on the target image I

One-step-more incremental learning detect changes against Iy by measuring the
effect of incremental learning on new incoming data I;. Usually, based on the
model of batch learning, incremental learning is conducted continuously step
by step from the appearance of the first sample to the completion of that all
samples being learned. However, in our method, while a new sample appears,
the incremental learning is merely conducted once (i.e., one step) on the basic
model obtained from Iy. Hereafter, when the next sample comes, the incremental
learning agent starts over from the original Iy base model and repeat the incre-
mental learning detection step. In other words, while conducting image change
detection the incremental learning agent collects no new knowledge in memory.

In the proposed approach, as a result of knowledge discovery on Iy, Iy now
is represented as an incremental learning model Mj.

M0:{<M00k,Rang€6)k >hk=1,....K (8)

The basic detection model M (? * is formulated by (5). The range Rangeg ks
given by one-step learning (6) and (7). Lets assume that each data sample from
D; (the collected data from I7) has the same object label as its corresponding
sample from Dy. The one-step more incremental learning on I; can be conducted
on each object of Iy by (9) as,

T
M7 (r) = Mg* + [DY*(r) —e] [DY*(r) —¢]. (9)
The effect of new sample DZ* (1) to M$* can be calculated via (10).
ef fects(r) = eig(M’% (r)). (10)

Then, the change status of the r-th sample is determined by effects(r) following
the rule as,
0, ef fects(r) € RangeS*
Ch =4q 2
ange(r) { 1, ef fects(r) ¢ Rangeoo’“.

Consequently, a binary image (or mask) Bo, = {b,, (m,n)|1 <m < M,1 <n < N}
are formed for each object defined in Ij.

(11)

3 Experiments and Discussions

A number of experiments were conducted to study the effectiveness of the new
approach. In this section we look at the data used in the experiments, the setup
and procedure of the experiments and we discuss the results of the experiments.

The data used in the experiments is digital image data of New Zealand
specifically the Auckland area. Auckland City Council covers the entire Auck-
land region in which there are over 800 designated public parks and reserves to
examine for possible encroachment. The range in the parks’ size is substantial,
for example in the Manukau area the parks range in size from 38 square meters
to 1995880 square meters. The data sets used for the detection of encroachment
are digital images of areas that include public parks.
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1 Aerial Photographs. The aerial photographs are captured on-line. The scale
is set manually to 7.5cm/234m at time of capture and the ratio is one pixel
to 0.5 meters. The images are in JPEG format and are collected from Google
Earth.

2 Land Boundary Data. The boundary data is used to verify that encroach-
ment has been detected and to estimate the size of encroachment. When
this research was started, there were seven Auckland regional councils and
of those councils approached 2 of them, Manukau and North Shore supplied
boundary data in GIS shape file format.

To demonstrate the automatic encroachment detection technique, for this
paper, four parks: Wyllie Park, Teviot Reserve, Auburn Reserve, and Diana
Reserve are selected as representative examples of the four categories of park
discussed above.

The experiments were carried in three phases. The first phase involves teach-
ing the agent prior knowledge about the land cover patterns such as grass, build-
ings, trees, fences and roads, as they are most commonly found in and around
public parks in Auckland. Note that, for this purpose, we collect data only from
non-park areas for the training of the agent. After the first phase learning, the
agent now has the prior knowledge (i.e., the number of clusters k& and initial
mean vector of each cluster). In the second phase, we set the equipped agent to
perform spatial incremental learning on I in order to obtain knowledge from the
source image.The third phase is change detection on I;. We set the Iy learned
agent to repeat the incremental learning process on I; to detect change of Iy
against Ij.

3.1 Land Cover Change Detection Results
Four specific experiments are carried out:

1 To detect permanent encroachment such as buildings.

2 To detect encroachment in the form of areas of a park fenced off.

3 To detect temporary encroachment such as vegetable-growing.

4 To detect possible areas of encroachment that may obscured by natural ob-
jects such as trees.

Permanent Land Cover Encroachment Type 1: Permanent land cover en-
croachment is where a building is constructed illegally on a public park. In land
management terms this is the most serious form of encroachment. Although it
is relatively simple to detect the presence of a building on a park, one difficulty
in detecting permanent encroachment is the misclassification of legitimate con-
structions. One solution to this problem is to capture multiple images over an
extended time-frame and make continuous comparisons. The type of structure
built can range from a movable private structure (e.g. a shed), an immovable
private structure (e.g. a deck) through to commercial buildings and government
building
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Fig. 3(a) shows Wyllie Park with the council boundary, Wyllie Park with
a house encroaching near the top-left corner and the results of the image seg-
mentation algorithm: white pixels indicate encroachment. In the next section we
detail the performance of our method of classification.

(d) Diana reserve

Fig. 3: Experiment results

Type 2: We provide a permanent land use encroachment example where a
fence is built illegally on a park, see Fig 5. In land management terms this is the
another serious form of encroachment. This type of encroachment can be one
of the most difficult to detect because the land cover change is usually not as
noticeable as that of a building. This is especially true when the fence or enclosure
structure is only a few pixels thick in the observed image. Contrariwise, when
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these enclosure boundaries increase in pixel width they become much easier to
detect.

Fig. 3(b) shows Teviot Reserve with the council boundary, the ground truth
image with an introduced fence element and the results of the image segmenta-
tion approach, white pixels classify encroachment.

Type 3: Temporary Use Encroachment, for example vegetable-growing, is
not as serious as permanent encroachment as it is normally easier to resolve by
the authorities. This type of encroachment can be difficult to detect especially
when the colour of the vegetation is similar to the naturally occurring colours
in the park. Another example of this type of encroachment is the detection of
illegal garbage disposal on public land, this problem is usually easier to detect
as the garbage colours usually differ in contrast and hue from the background.
Temporary encroachment could become permanent if it is not dealt with by the
authorities in a timely manner. Other types of temporary encroachment include
organic dumping (e.g. grass cuttings) and inorganic dumping (e.g. furniture),
grazing (e.g. horses) and intrinsic value (e.g. a fruit tree planted).

Fig. 3(c) shows Auburn Reserve with the council boundary shown on an
overlay, the ground truth image with an introduced vegetation element and the
results of the image segmentation approach, white pixels indicate the vegetation
encroachment detection.

Type 4: Physical boundary encroachment is a difficult problem to solve, es-
pecially when the boundary encroachment is concealed under a canopy of vege-
tation. However, not all vegetation canopies will hide illegal encroachment.

Fig. 3(d) shows the Diana Reserve park area, the ground truth image with an
introduced plant elements and the results of the image segmentation approach,
white pixels show the areas of newly introduced plant life. In many instances,
this plant life will be introduced by the authorities, especially when it is in the
confines of the park. However, the elements detected on park boundaries should
indicate a possible encroachment, as these elements may have been illegally
placed or provide canopies for illegal encroachment. These type of boundary
triggers should warrant further investigation by the authorities.

Park Encroachment Park Size Encroachment Size Encroachment Park Rateable Encroachment Commercial
Name Type (pixels) (pixels) Scale Value(NZD) Value(NZD)
Wyllie Building 230,214 7,442 0.03 485, 000.00 14,550.00
Teviot  Area of park fenced off ~ 2007,890 158,297 0.07 510, 000.00 35,700.00
Auburn  Introduced vegetation 735,456 20,284 0.027 2150, 000.00 59, 288.00
Diana Newly introduced plant life 1260, 279 154,431 0.12 690, 000.00 84,550.00

Table 1: Details of the encroachment detected on the chosen parks

Table 1 above shows the experiment results in the terms of the size and
scale of the encroachment for each of the parks. The rateable value of each
park is obtained from the Auckland City Council [7]. The size of encroachment
in pixels is divided by the total area of the park in pixels to give the scale
of encroachment. The rateable value of the park is multiplied by the scale of
encroachment to give the commercial value of the encroachment. As stated in
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the introduction there are four main types of encroachment and each of the
four parks used in the experiments is an example of one of the four types. The
impact of the encroachment depends on the type of encroachment and the scale
of encroachment.

4 Conclusions and Future Work

The results of the experiments show that the approach is successful in high-
lighting possible occurrences of encroachment. The the main disadvantage of
the approach is that cannot work as a stand-alone solution - ground survey data
collection needs to take place to confirm the occurrence of encroachment. The
advantages of the approach are that permanent encroachment (such as buildings
and fences) can be detected and temporary encroachment (such as vegetable-
growing and garbage dumping) can also be detected. Another disadvantage of the
approach is that it is not as reliable in detecting encroachment and/or changes
in areas where there is a high concentration of tree as these area have a high
variation in colors and concentration
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