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Abstract: In today’s commercial world, information is becoming a major economic resource 

thus leading to a statement - Information is wealth. It is a technical challenge for computer 

systems in managing and analyzing the large volumes of data coming from a variety of 

resources continuously over a period. Experts are in a mood of moving towards alternative 

hardware platforms for achieving high-speed data processing and analysis especially for 

streaming applications. In this paper, (a) existing trends in big data processing and the 

necessary systems involved are studied by performing a survey on available platforms, (b) 

recommended features and suitable hardware systems are proposed based on the operations 

involved in the processing. Investigation shows that, in combination with CPU and along 

with GPU, FPGA is a possible alternative. It can be a part of the heterogeneous platform 

featuring parallelism, pipelining and high performance for the operations involved in big data 

processing. 
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1 Introduction 

In this globally-connected commercial world, 

information (or data) is becoming such key resource 

which is creating tremendous business opportunities and 

making the people keep saying “Information is Wealth”. 

Now the data has reached in different directions in terms 

of size, type, and speed, and has received wide attention 

as “Big Data”. It refers to the large amounts (volume) of 

heterogeneous data (variety) that flows continuously 

(velocity) within data-centric applications. All these are 

mentioned together as three Vs of big data (volume, 

variety, and velocity) (Russom, 2011) though not limited 

to three Vs. Volume, which is the primary characteristic 

of big data, refers to the large size (Tera or Petabytes) of 

records, transactions, tables, files, video, web text, sensor 

logs, and astronomical points, etc. Treating big data as 

big is because it is coming from the greater variety of 

sources that defines the second important characteristic as 

variety. Velocity refers to the frequency of data 

generation or the frequency of data delivery.  

It is also necessary to consider two other equally 

important Vs: value and veracity. Value represents the 

analytic applications of the data and its potential 

associated value to the business. Veracity represents the 

quality and understandability of the data. That means that 

many users expect perfectly clean data. Putting all these 

Vs together, the commercial benefits of analyzing or 

mining such large set of data can be phenomenal 

especially in this so called social-connected global village. 

Study presented by various agencies such as MIT Sloan 

School of Management (LaValle et al., 2010), proved that 

the companies that use data analytics perform at least 

twice higher than the companies that don’t use data 

analytics. To mention it, big data in companies is 

analyzed for many purposes such as: customer retention 

and approaching new customers at minimized cost, 

improving the future prospects of the analytics in the 

global market and many other commercial benefits.  

Today’s data centers are heterogeneous systems by 

combining Central Processing Unit (CPU) and Graphical 

Processing Unit (GPU) and sharing the workloads among 

each other based on the user requirements. Traditionally 

CPU and then GPU are the most popular machines for 

data management centers. Although each machine has its 

own benefits from the application perspective, it is 

proven (Fu et al., 2013) (Christos et al., 2012) (Che et al., 

2008) that the GPU wins over CPU particularly for data 

processing. Field-Programmable Gate Arrays (FPGAs) 

are becoming as another choice of heterogeneous 

hardware due to their highly flexible, parallelism-oriented 

and reconfigurable architecture style. Choosing right 

platform among the available hardware based on the 

specific needs can be crucial in achieving necessary 

objectives. The decision of the necessary hardware 

depends on many factors and a good study on such space 

will provide enough benefits for the researchers to reduce 

the search path and reach the goal.  

Here in this paper, the contributions include: 

• Studying the available big data processing 

infrastructure and extracting the requirements of 

building processing platform. 

• Recommending features and suitable hardware 

systems such as GPU and FPGA depending on 

various operations involved in big data processing. 

A comparison is carried out on GPU and FPGA by 

studying the available research works implementing 

various data operations. 

• Investigating the role of FPGA in big data 

infrastructure using experimental analysis on FPGA 

based systems: multi-FPGA system and 3D FPGA. 

In the following, Section 2 covers key stages of big 

data analytics, and Section introduces existing 

commercial and real-time processing infrastructure. The 

big-five features: Heterogeneity, Accessibility, 

Scalability, Protection, and Elasticity; necessary for big 

data infrastructure development are depicted in Section 4. 

Section 5 provides different processing systems in 

heterogeneous platform. Section 6 proposes systems 

selection based on the operations involved in big data 

processing, A comparison between GPU and FPGA 

through survey on available research work on both 

platforms is given in Section 7. Section 8 discusses 

FPGA’s role in big data processing through experimental 

analysis and highlights FPGA's significance as a suitable 

candidate in big data processing platforms. Finally, the 

paper ends with the conclusion in Section 9.   

2 Key Stages of Big Data Analytics 

Systematically speaking, big data analytics is a 

technology involving the following key stages: Big data 

integration; Big data storage and processing; Big data 

query analysis and visualization; as shown in Fig. 1. 

Figure 1 Key stages of big data analytics  
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2.1 Big Data Integration 

Since the variety of data sources is extremely large in 

today’s data management, linking and fusing different 

types of data is becoming a critical challenge. Within this 

challenge another major concern is not only integrating 

the different data types, but also dynamic behavior of 

data sources, quality, accuracy and timeliness of the data 

need to be considered. Dong et al. (2013) provide a neat 

discussion on state-of-the-art data integration techniques 

meeting the challenges of big data. 

2.2 Big Data Storage and Processing 

In an era of data analysis and management, storage is not 

only for data destination but also as a data platform. 

According to Redhat study (Redhat, 2013), five must-

have fundamental requirements for big data management 

and storage are: cost-effective scalability, data migration 

elimination, bridging of disconnected discrete storage 

systems, data management through a unified data pool, 

and data availability and integrity through software.  

Processing big data can be either in batch mode or 

streamline mode. That means some applications such as 

financial data are generated in batch mode. It is required 

to analyze and output the result on a scheduled basis, 

namely through the store-and-process paradigm. Many 

time-critical applications generate data continuously and 

expect the processed outcome on a real-time basis such as 

media processing involving video and image analysis. A 

new computing paradigm called Complex Event 

Processing (CEP) (Gulisano et al., 2012) deals with such 

issue. CEP generates complex events from a sequence of 

real-time events and allows events to be both filtered with 

user-defined patterns and transformed into new data. 

Hence, applications will be able to handle the events and 

data quickly and easily. Although CPU-based CEP 

systems achieve sophisticated event processing, they 

suffer from poor event processing performance. FPGAs 

are the possible reconfigurable hardware alternative in 

order to accelerate event processing (Inoue et al., 2011). 

Specific to batch processing, MapReduce (Apache, 2014) 

is a programming model and an associated 

implementation for processing and generating large data 

sets with a parallel and distributed approach. The 

hardware choice for such distinct processing needs must 

ensure the capability of handling and meeting the user 

requirements. 

2.3 Big Data Query Analysis and Visualization 

The enormous volumes of data require automated or 

semi-automated analysis that involves techniques to 

extract the credible information, to detect patterns or 

points, identify or match the objects among different 

images or videos. These kinds of techniques involve a 

combination of statistical analysis, optimization, and 

artificial intelligence along with new forms of 

computation. Innovative statistical models should be 

constructed to represent the unstructured data in a 

meaningful manner. The concepts such as machine 

learning play a pivotal role in automation of big data 

analysis. Once the data is mined, the outcome should be 

visualized according to the user requirement. For 

example, in the case of recommended systems, analysis 

algorithms should be intelligent enough to know which 

customer needs what (Zhen, 2013). 

3 Existing Commercial and Real-time Big Data 

Infrastructure 

Many technology firms developed their proprietary 

infrastructure for fulfilling the customer big data needs. 

Oracle explored typical use cases and proposed 

architecture decisions and necessary technology 

components which include variety of real-time 

applications such as; retail-weblog analysis, financial 

services real-time transaction detection; and insurance 

based cost-effective capturing of customers’ driving 

habits and integrating with existing data (Oracle, 2012). 

Hewlett-Packard's HAVEn big data platform (Burk, 

2013) is rapidly gaining its importance in its commercial 

big data analytics market expansion. HAVEn, is a big 

data analytics platform, which leverages HP’s analytics 

software, hardware and services to create the next 

generation of big data analytics applications and solutions.  

IBM’s Netezza (Francisco, 2011), which falls under 

data warehouse appliance category, is widely credited for 

bringing renewed attention to the advanced analytics 

applications. They have developed a big data 

infrastructure platform using heterogeneous 

reconfigurable hardware such as FPGA. Their purpose-

built analytics appliance includes custom-built FPGA 

accelerators. Netezza minimizes data movement by using 

innovative hardware acceleration. It uses FPGA to filter 

out extraneous data as early in the data stream as possible, 

and as fast as data can be streamed off the disk (Francisco, 

2011). They proved and showed the tremendous benefits 

by introducing FPGAs in big data analytics hardware. 

Specifically saying, they compiled the queries using 

FPGAs to minimize overhead. Each FPGA on server 

blades contains embedded engines that perform filtering 

and transformation functions on the data stream. These 

engines are dynamically reconfigurable that enables them 

to be modified or extended through software. They are 

customized for every snippet through instructions 

provided during query execution and act on the data 

stream at extremely high speeds. Cisco Unified 

Computing System (Cisco UCS) introduced reliable 

scalability of hardware and management to increase 
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business agility, operational efficiency and helping in 

rapidly responding to changing business requirements 

(Cisco, 2014). 

Academic researchers also showcased vital 

development in building infrastructure for big data 

analytics. For example, BlueDBM or Blue Database 

Machine, (Jun et al., 2014) is a storage system for big-

data analytics that can dramatically speed up the time it 

takes to access information. In this system, each inbuilt 

flash device is connected to FPGA chip to create an 

individual node. FPGAs are used not only to control the 

flash device, but are also capable of performing 

processing operations on the data itself. 

4 Big-Five Features Necessary for Big Data 

Processing Infrastructure 

For the development of big data infrastructure, based on 

our study we have observed big-five features we refer as 

HASPE that need to be satisfied by the big data analytics 

infrastructure: Heterogeneity, Accessibility, Scalability, 

Protection and Elasticity (as shown in Fig. 2).  

Heterogeneity: In the world of big data, the data 

sources responsible for such huge information are 

heterogeneous in the sense of data type. Data integration 

is responsible for handling such heterogeneity of input 

data. To improve the performance of processing big data, 

new hardware components are showing their tremendous 

features to be included in the overall system. For many 

decades, CPU has been the most popular and traditional 

system component for all needs. Introduction of 

innovations such as multi-core, many core processors, 

GPU and, to a certain extent, FPGA are used as 

accelerators in big data processing systems. One can 

think of other promising technologies such as systems 

having Massively Parallel Processor Array (MPPA) and 

large-scale reconfigurable data-path processor using 

single-flux quantum (SFQ) circuits (Mehdipour et al., 

2011), which are specialized in accelerating scientific 

computations. These systems allow the designers to 

create heterogeneous hardware platform to improve 

performance and power efficiency. New approaches 

based on specialized heterogeneous processors such as 

FPGAs and general-purpose GPUs (GPGPUs) are being 

introduced into service with impressive results (Thomas 

et al., 2009). 

Accessibility: The true objective of big data analysis 

is to create business opportunities. That means over many 

different kinds of applications; there will be as many 

users those are in need of specific and variety of data 

analytics outcome. To bring, add and satisfy all the users, 

big data infrastructure has to ensure that data users can 

access the data whenever and wherever they want. This 

means that it has to be both reachable and available  from 

Figure 2 Big-Five features for big data infrastructure 

 

many systems across multiple locations. 

Scalability: Big data infrastructures are designated to 

handle large data volumes and certainly they need to be 

able to scale according to the user requirements over a 

period. The easiness in scaling the infrastructure decides 

the compatibility among different hardware and software 

components. Adding arrays of storage modules and/or 

improving the processing efficiency transparently without 

suffering from the overhead issue can add many 

advantages. They should be scalable geographically to 

enable the large infrastructures to be spread across 

multiple locations. 

Protection: Technically saying, it is a combination of 

security and dependability. Majority of the applications 

carry their set of preferences for maintaining security 

requirements and standards. For example, US Federal 

agencies report a continuing shift to virtual desktop 

infrastructures for greater data centralization and 

deploying "cloud hubs"- a private-cloud infrastructure to 

maintain their own set of security standards for 

preventing data theft and hacking problems (Malykhina 

2014). Citing necessary security standards specific to 

user requirements in the big data infrastructure 

development ensures the user for adequately classifying 

the risk level of data analytics and taking steps to 

mitigate risks. 

Elasticity: Data sources and hence the data is getting 

larger and larger. Big data infrastructure designated to 

handle the present, and future data tends to be flexible 

enough in many ways. Care must be taken in the 

development so that they can grow and evolve along with 

the data sources. For example, so far the traditional data 

management requires centralized architecture 

components whereas the big data management required 

distributed architecture components for building efficient 

infrastructure. The overall system should be able to adopt 

technology trends necessary to cope with various 

objectives set by the applications. Normally scalability is 

related to the size of the infrastructure nothing but the 

storage capacity/expandable file space, and flexibility 

represents handling unknown requirements into the future. 

Elasticity is linked to all the above-listed features 

representing the much-needed storage, processing and 

analysis environment suited for fulfilling the demand 

generated by business requirements in omni-directions.  

Heterogeneity Accessibility

ProtectionScalability

Elasticity
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5 Processing Systems in a Heterogeneous Platform 

for Big Data Processing 

Big data processing is per essence parallel regardless of 

the programming model. Parallelism can be achieved by 

executing CPUs in parallel, but it has been determined 

that is more power-efficient to have computation units on 

a single chip. Although modern CPUs do feature parallel 

units, there are other chips that propose more degree of 

parallelism such as GPU, FPGA, and MPPA. The former 

first two are already extensively available in the market 

and extensively studied in research. Although other 

processing systems like MPPA showed significant 

performance benefits, their usage is limited by many 

factors compared to GPU and FPGA (Thomas et al., 

2009). 

5.1 Graphics Processing Unit (GPU): 

Computing paradigm witnessed transition from 

sequential computing, a dominant feature in the past, to 

parallel computing model. Such transition motivated the 

researchers for new and innovative computer architecture. 

GPU is perhaps the most successful new architecture. 

GPU is a highly specialized parallel processor for 

accelerating graphical computations. With the 

introduction of general computing on GPU with GPGPU 

mode, GPU has received wide applications ranging from 

the gaming industry to data analytics. That means GPU 

let the user perform flexible computation in a more 

general purpose sense. Several benefits can be attained 

using GPGPU: large performance through extended 

parallelism and cost-effective solution compared to CPU.  

GPGPU is a combination of hardware components 

and software that allows the use of a traditional GPU to 

perform computing tasks that are extremely demanding in 

terms of processing speed. There are several popular 

systems exist in the commercial market from Nvidia, 

AMD (ATI), ARM Mali, and PowerVR. Also, many 

programming models are available for GPU such as 

CUDA (Nvidia, 2014), OpenCL, DirectCompute, 

C++AMP.   

5.2 Field Programmable Gate Array (FPGA): 

FPGAs can support very high rates of data throughput 

when high parallelism is utilized in circuits implemented 

in the reconfigurable fabric. FPGA reconfigurability 

offers a flexibility that makes them even superior to GPU 

for certain application domains. The purpose of an FPGA 

is to provide a customizable field-programmable device 

that can be optimized to perform the calculation for a 

specific problem. This is achieved by allowing the logic 

blocks on the chip to be logically re-connected even after 

the board has been shipped. The key features of FPGA 

that can provide motivation for big data analytics are: 

parallelism and efficient power consumption 

(performance/watt). Within FPGA technology, there are 

many different architectural implementations by different 

manufacturers in order to cope with the everyday 

changing technology trends such as multi-FPGA systems 

and 3D FPGA which will be discussed in later sections. 

6 System Selection Based on the Data Operations 

Most organizations with traditional data platforms such 

as enterprise data warehouses find that their existing 

infrastructure is either technically incapable or financially 

impractical for storing and analyzing big data. 

Companies such as Intel has developed and deployed a 

balanced platform for various real-world deployments of 

Hadoop (Apache, 2014), which is an open source 

distributed software platform for storing and processing 

data, runs on a cluster of industry-standard servers 

configured with direct-attached storage. Based on their 

assessments and benchmarking efforts, they have their 

recommendations for users or customers while 

considering infrastructure hardware. For example, Intel 

offers Xeon processor E5 for computing, essential system 

memory 48 GB to 96 GB of RAM per server, Intel SATA 

solid-state drives to fulfill the storage needs, and a 

minimum of 10 Gigabit Ethernet network (Intel, 2013). 

That means the selection of key specifications for a given 

application can be specific to each domain and operations 

involved in each system. Some of the most notable 

characteristics to help in decision making during the early 

stages of development are: bandwidth, data width, 

read/write speed, data process mechanism (e.g. batch and 

stream processing), network switching topology, traffic 

density, congestion control and security standards. All 

these characteristics define four distinctive categories of 

system specifications for hardware infrastructure 

including compute, memory, storage, and network. 

Fig. 3 gives insight on the components derived from 

big data processing stage in Fig. 1. It shows different data 

types and data operations involved in big data processing.  

The big data comes from various sources such as social 

networking, mobile devices, satellites, financial items 

such as stocks, retail businesses, etc. All these data is 

structured, semi-structured or unstructured, often involve 

different data types such as tables, audio, video, text, 

html, etc. Based on the application domain needs, this 

data is required to be processed online (streaming) or 

offline (batch) which again requires storage and 

processing devices. The processed data is then analyzed 

specific to the user need and visualized in the necessary 

form. Even though this phenomenon of handling the data 

looks traditional in some way, the software and hardware 

architecture used for the entire flow varies heavily in 

order to fulfill big data needs. 
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Figure 3 Big Data Processing and Infrastructure Selection 

 
 

Big data analytics discusses lots of relationships between 

various components, factors, sources and creates a 

platform to perform all the intended operations. For 

example, the core component of big data analytics - data 

mining, allows users to analyze data of many different 

dimensions, categorize it, and summarize the systematic 

relationships identified. Specifically, it is the process of 

finding correlations among heterogeneous fields in large 

databases.  

Now the challenge is, what type of hardware system 

is more suitable for which data type? It is observable 

from our studies that, GPU, FPGA or CPU, or a 

combination of these components provides stupendous 

results in terms of performance and power efficiency. For 

example, GPU is power efficient but only for SIMD 

streams and FPGA is hard to program. However, the data 

flow style architecture feature in FPGA may dominate 

CPU and/or GPU in providing high-performance memory 

intensive operations at low power consumption 

(performance/watt) for a category of operations. Some of 

the typical operations involved in data mining stage in 

big data processing platform are Sparse matrix solution, 

Random number generation, Bayesian inference, Double 

precision floating point operations and so on. Several 

previous works showcased comparison of performing 

such vast number of operations on a different set of 

hardware systems.  A study based on the type of 

hardware and a set of operations that can be efficiently 

implemented can be greatly helpful in choosing or 

recommending a suitable infrastructure for big data 

processing. Following section discusses effective 

contribution derived from our studies on earlier research 

works performing various operations on the intended 

hardware systems.  

7 Performance and Power Efficiency in GPU and 

FPGA  

In the past, many researchers showed the benefits of GPU 

and FPGA targeting data operations those can be 

encompassed in the real-time applications of big data. 

The following discussion gives the reader to compare 

GPU and FPGA for a wide range of operations covering 

various applications. Table 1 shows the list of technology 

domains/applications that can be involved in big data 

analytics. Each domain is studied based on a specific set 

of functions or operations which are necessary to be run 

or implemented on a selected hardware. We have studied 

previous research specific to each domain and a 

particular operation. Most of the works are targeted CPU, 

GPU and FPGA although some examined MPPAs. It is 

observed that the GPU and FPGA are the most 

competitive platforms for a vast range of applications. 

Table 1 shows two columns indicating the 

superiority of the given platforms in terms of 

performance and power efficiency. That means; 

performance indicates how fast the given application can 

be run or implemented and how power efficient each 

platform is. For example, a 20x power efficiency for 

FPGA means, FPGA is 20 times more power efficient 

than its counterpart. In other words, FPGA consumes less 

power than its counterpart. The hardware chosen for 

these studies are available in the commercial market. It 
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should be noted that, it is practically difficult to select the 

different hardware resources featuring same 

characteristics because each one is unique in their 

respective segments. Especially the clock frequency 

selection is a major hurdle in comparing those systems. 

For example, typical FPGA will have less clock 

frequency than its counterpart. Sometimes its frequency 

is nowhere matching CPU/GPU. However for fair 

comparison, researchers made choosing the hardware 

based on a similar resource utilization by the operations. 

In most of the works, results are compared in terms of 

cycle counts, eliminating scaling and frequency issues. In 

some works, FPGA fabric’s efficiency is evaluated 

relatively to the GPGPU by normalizing the operation’s 

performance to device core count.  

With respect to the applications in Table 1, each and 

every one is commercial and frequently used data sources 

generate large amounts of data. It is quite essential for the 

processing infrastructure to be compute-intensive for 

running and processing such variety of data under time-

bounded format. Special-purpose processors such as 

accelerators are designed to speed up such compute-

intensive sections of applications. GPU and FPGA are the 

possible accelerators which can often achieve higher 

performance than CPUs on certain jobs. Che et al. (2008) 

presented a comparison between GPUs and FPGAs by 

running three diverse operations-Gaussian Elimination, 

Data Encryption Standard (DES, and Needleman-

Wunsch on both the systems and also on CPU. They have 

provided pros and cons of FPGA platform as they 

compare to GPU. Although the hardware characteristics 

of all three systems are not at the same level, which may 

not be possible to achieve, authors compared the results 

in terms of cycle counts thus avoiding scaling and 

frequency issues.   

Table 1 List of observations for a variety of data sources processed on different systems. 

Application Domain Operations Involved Reference Work 
Performance Power 

GPU FPGAs GPU FPGA 

DNA Sequence 

Alignment 

Gaussian Elimination, 

DES, Needleman-
Wunsch 

(Che et al., 2008) 12 x CPU 

(Gaussian) 

50 x CPU (Gaussian) 

>1000 x GPU (DES), 

15 x GPU 

- - 

Astrophysics Gravitational 

Calculations 

(Hamada et al., 2009) Relatively 

higher for old 

technology 
nodes 

Better performance 

for the largest 

technology nodes 

 

- 

34 x 

CPU, 

15 x 
GPU 

Bioinformatics Bayesian Interface 

Algorithm 

(Fletcher et al., 2011) - 3 x GPU - - 

Climate Modeling, 

Geophysics Exploration, 

Remote Sensing 

Parallel Data 

Compression, Parallel 
Sparse Matrics Solver 

(Fu et al., 2013) 23 x GPU 330 x CPU 

14 x GPU 

14 x 

CPU 

144 x 

CPU, 

9 x 

GPU 

Autonomous Navigation 

and Surveillance  

Stereo Correspondence 
Algorithms 

 

(Kalarot et al., 2010), 

 (Ureña et al., 2012) 

Significant 
internal 

overhead 

Superior 
implementation - - 

Tone Mapping, Contrast 

Enhancement, and Glare 
Mitigation   

More precision 

high-quality 
output images 

Higher frame rates 

and less power - - 

Molecular & Quantum 

Mechanics, 

Bioinformatics, and 

Fluid Mechanics 

Random Number 

Generation 

 

(Thomas et al., 2009),  
(Kestur et al., 2012),  

(Andryc et al., 2013), 

(Papakonstantinou et 
al., 2009), 

 (Pratas et al., 2010) 

 

9 x CPU 

30 x GPU 

3 x GPU 

9 x 

CPU 

175 x 

CPU, 

18 x 

GPU 

Basic Linear Algebra 
Subroutines (BLAS), 

Double-Precision 

Floating-Point 

~ CPU, 

> FPGA 

 

~CPU but flexible, 

Reaching GPU 

 

- 

 

> CPU, 

> GPU 

Financial Engineering 

Model 

Heston Stochastic 

Volatility Mode 

(Delivorias et al., 2012) 250 x CPU 590 x CPU - - 
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That means authors compared the values returned 

by performance counters via library functions. For the 

first application, FPGA showed superiority to other two 

systems. The major overhead of GPUs and CPUs comes 

from executing instructions that rely on memory accesses. 

FPGA took the advantage of data-flow streaming thus 

saving many of the memory accesses. In this application, 

the only drawback with FPGA is the programming 

complexity. For the second application DES, again, 

FPGA is superior to other two systems mainly because 

FPGA can finish bit-wise calculations in one cycle. 

Interestingly GPU does not support some important 

operations for DES whereas FPGA has no such problem. 

Note that it may also be possible to provide explicit 

support of bit-wise operations by software programming 

in GPU. In the last application execution, again FPGA 

achieved lowest overhead among all the three systems. 

But for a larger input size, the ratio of GPU execution 

cycles to FPGA execution cycles becomes smaller, due to 

better GPU utilization. Note that the data protection can 

be better achieved in FPGA than GPU due to its 

hardware programmability which is less vulnerable to 

hacking and counterfeiting.  

Above application shows the comparison in terms of 

performance. Although, big data processing is a 

performance intensive, some applications specifically 

require reduced energy cost. Hamada (2009) presented 

research work on comparing FPGAs, GPU and General 

Purpose Processors (GPP) targeting many-body 

simulations for astronomical systems. They have 

compared all the systems in terms of development years, 

chip technology, pipeline depth, frequency, power 

consumption and similar other parameters. It is proved 

from their experimental results that FPGA could be a 

viable solution on an energy cost basis for very high 

performance, large scale many-body simulations.  

The work presented by Thomas et al. (2009) targets 

random number generation that is a frequently used 

function in high-performance computing (HPC). It can be 

efficiently implemented on FPGA than GPU/CPU as it is 

consuming 18 times less power than GPU and 175 times 

less power than CPU. FPGA wins for the majority of the 

applications compared to its counterparts in terms of 

power consumption (performance/watt). The major 

reason for this phenomenon is because of the easy 

memory access using the inbuilt memory banks. 

Furthermore, FPGA can finish bit-wise calculations in 

one cycle that can results in improved performance and 

reduced power consumption.  

Applications such as climate modeling, geophysics 

exploration and remote sensing data processing require 

data compression and sparse matrix solver. Fu (2013) 

showed that FPGA outperforms GPU and CPU with at 

least 14 times greater performance (points/sec) than GPU 

and 330 times greater super-performance than CPU. 

Along with that, FPGA is nine times more power 

efficient (points/(sec x watt)) than GPU and 144 times 

than CPU, thus highlighting the FPGA’s significance in 

such commercial applications. 

Although FPGA is a winner with respect to the 

power-efficient category, still GPU is outperforming its 

counterparts in terms of performance for some 

commercial applications as shown in Table 1. 

Multimedia and communication algorithms from the 

HPC domain (Cullinan et al., 2012) often make extensive 

use of floating-point arithmetic operations. Due to the 

fact that complexity and expense of the floating-point 

hardware on a reconfigurable fabric such as FPGA are 

high, these algorithms are converted to fixed-point 

operations thus making FPGA less efficient than GPU for 

achieving higher speeds. Although such statement holds 

for many years, industry people are trying to mitigate this 

problem by developing floating-point data flow for 

streamlining the implementation process to enable those 

designs for achieving higher performance and efficiency 

as presented in Berkeley (2012). FPGA is still finding its 

importance in very specific set of data transfers (sending 

and receiving data) as reported by Cullinan et al. (2012). 

It is worth mentioning that a combination of FPGA, 

GPU and CPU hardware infrastructure is giving good 

results for the applications such as medical imaging 

(Meng et al., 2012). Even though it tends to be very 

expensive to develop such true heterogeneous 

infrastructure,  the  choice  is   purely based   on  the  user 

Figure 4 (a) Multi-FPGA using off-chip interconnect bus (b) 

TSV-based 3D FPGA 
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requirement. Another significant requirement of 

heterogeneity is in signal processing domains which are 

in need of FFT, FIR, AES and floating-point operations. 

Several other works such as (Chase et al., 2008), (Fowers 

et al., 2012), (Grozea et al., 2010), (Haselman et al., 

2012), (Jones et al., 2010), (Kapre et al., 2009), 

(Marrakchi et al., 2012), (Muthumala et al., 2012), 

(Nechma et al., 2012), (Pacholik et al., 2011), (Sarkar et 

al., 2010), (Yang et al., 2010) and (Zhang et al., 2009) 

have performed a comparison on above hardware 

platforms leading to similar conclusions.  

8 FPGA Systems for Big Data Processing  

One of the vital features of FPGA is its parallelism 

through hierarchical style architecture which can be very 

much suitable to data processing applications. Many of 

the widely used and typical data operations can be 

implemented on FPGA through hardware 

programmability. Researchers in the past showed many 

benefits attained by FPGA compared to CPU and GPU 

for a wide range of applications. Based on the 

applications, quantity and size of FPGA varies and has 

architectural constraint from the commercial device 

availability perspective. For the applications like big data 

processing, if someone wants to use FPGA as a part of 

the whole heterogeneous system, there is an immediate 

need of networking FPGA chips through off-chip 

interconnect buses. Such kinds of systems are already in 

use typically named as multi-FPGA systems. These are 

the devices developed to handle much larger designs 

compared to a single FPGA chip.  Recently through the 

advancement of IC manufacturing, 3D integration of 

dies/wafers on to a single chip allows the designers to 

handle larger designs with better performance benefits 

through on-chip communication. The following sub-

sections discuss these two different FPGA systems: 

multi-FPGA systems and 3D FPGA; and comparison 

among them in terms of area and performance efficiency 

through experimental approaches proposed in our 

previous work (Nunna, 2014) . 

 

8.1 Multi-FPGA System 

A multi-FPGA system, as shown in Fig. 4(a) contains 

multiple reprogrammable devices on a PCB. A system of 

FPGAs can be seen as a computing substrate with 

different properties than standard microprocessors. It 

provides a huge amount of fine-grain parallelism. When a 

circuit needs to be implemented on a multi-FPGA system, 

it is partitioned into a number of parts equal to the 

number of FPGA chips on the system. Then, these 

partitions are mapped onto those FPGAs separately. 

Inter-chip connections facilitate the communication 

between the FPGA chips. Note that the bus shown in Fig 

4(a) is an example representation of such communication. 

In real-time, the way FPGAs connected depends totally 

on the type of chip package used. Even though multi-

FPGA system can handle larger designs, due to their off-

chip communication strategy the communication between 

the chips is limited by the bandwidth constraints imposed 

by the interface unit. With the constraint such as a limited 

number of I/O pads on FPGA, it is also necessary to 

multiplex the FPGA-to-FPGA signals, which further 

reduces the performance. One possible solution to 

achieve higher speed at the same level of circuit 

complexity is three-dimensional (3D) integration of 

FPGAs, introduced below. 

8.2 3D FPGA 

3D FPGA is one of the promising innovations which can 

provide benefits like increasing transistor density, 

reduced form factor, heterogeneous architectures and 

improvement in delay by significantly reducing the wire 

lengths of integrated circuits (Alexander et al. 1996). It is 

a multi-layer device stacked using through-silicon via 

(TSV) technology. That means the communication 

between the layers is done by using TSVs as shown in 

Fig. 4(b). The communication between the layers in 3D 

FPGA is on-chip, and hence it is quite obvious from the 

implementation perspective to expect higher speed 

compared to the off-chip communication platform.  

Our previous work (Nunna, 2014) introduced an 

evaluation methodology for comparing a multi-FPGA 

system with TSV-based stacked 3D FPGA. Our study 

indicates an emphatic analysis on benefits attained by 3D 

FPGA against the multi-FPGA system while running 

complex designs or applications. According to our 

experiment results based on the standard benchmarks 

(VPR, 1997), the 3D FPGA is effective in reducing the 

wirelength and routing area by an average of 20.78% and 

27.42% respectively compared to its 2D counterpart. A 

multi-FPGA system consisting of two FPGAs can have a 

footprint area larger than a 2-layer 3D FPGA plus 

additional off-chip interconnect bus area. In terms of 

performance, the 3D FPGA achieved a maximum of 

around 80% lesser delay compared to multi-FPGA 

system of two FPGAs (Fig. 5). These results provide the 

strong motivations for 3D FPGA to be considered as an 

alternative for processing platform in data management 

and analytics. Specific to big data analytics where speed 

is a high-level priority for many applications especially 

streaming data processing, 3D FPGA can provide 

improved delay  characteristics. This  kind  of  motivation  

can add extra potential to the already available feature - 

parallelism of FPGAs, which may results in much faster 

analysis of complex data. 
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8.3 FPGA as a Competitive Candidate 

Over a range of application domains that continuously 

generate complex and unstructured data expect a highly 

efficient infrastructure for storage, processing and 

analysis needs. Traditional CPU may not be enough to 

fulfill and handle the extreme operational needs. Though 

multi-core and many-core architectures created a base for 

the last couple of years, GPU proved as the most 

replaceable candidate for CPU due to many advantages 

that we have discussed so far. GPUs are much cheaper 

than FPGAs. Software programming in GPUs is 

relatively easy compared to the hardware programming in 

FPGA thus making FPGA development difficult. It is 

understood that, although GPU gives optimistic 

parallelism by using its software programming concept, 

still FPGA can be a possible alternative to maintain the 

balance between power and performance which may not 

be a case in GPUs especially on an energy cost basis. The 

data flow and pipelining architecture style of FPGA gave 

an interesting choice to the designers to create a strong 

parallelism approach for data analytics. On the flip side, 

FPGA is finding its difficulty in floating-point operations 

and due to recent advancements and architecture 

development; it is becoming quite considerable across 

many applications. However, newer FPGA generations 

incorporate floating-point (FP) units as IP cores such as 

Stratix IV EP4SE530 (Altera, 2009). 

FPGA can be considered as a processing engine in a 

cloud-based platform which requires a combination of 

distributed parallel processing and on-the-fly processing 

by demanding new technologies to fulfill the 

requirements such as high-speed data conversion, flexible 

resource allocation and resource optimization through 

load balancing (NEC, 2014). From the above discussions, 

we understand that for the applications, which need to 

make balance between performance, power, cost, time-to-

market all together, FPGA can be an alternative along 

with GPU. Many companies such as National 

Instruments has already begun building FPGA-based 

virtual instrumentation such as reconfigurable IOs for 

commercial applications.  

9 Conclusion 

In this research paper, several developments in big data 

analytics were studied with specific concentration on 

hardware infrastructure. Big data processing trends were 

discussed by studying various data generation 

applications and different operations involved in some of 

the widely known applications. The survey was 

conducted based on the existing research works on some 

of the important data operations implemented on GPU, 

FPGA and CPU with respect to the performance and 

power consumption metrics. The significance of FPGA is 

pointed out as well from the comparisons. Within FPGA, 

different types of systems: multi-FPGA system and 3D  

Figure 5 Delay comparison: 3D FPGA vs. Multi-FPGA system  

FPGA were studied, and the experiment results showed 

that 3D FPGA wins in handling the objectives such as 

performance and area optimization.  

From our study we can say, CPU may not be enough 

for big data processing especially for future data-centric 

applications. It is observed that GPU and FPGA are 

relevant alternatives that are already in use. Although 

GPU is more common in use because it is easier to 

program and cheaper compared to FPGA, yet FPGA has 

the ability to occupy significant space in the 

heterogeneous platform of big data processing in many 

situations that we have studied. Also, to elevate the 

processing benefits of FPGA and supporting its 

architectural advantages, new FPGA technologies are 

coming to address its weaknesses. 
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