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Abstract - This paper presents a task migration algorithm for 

dynamic thermal management of SMT multi-core processors. 

The unique features of this algorithm include: 1) considering 

SMT capability of the processors for task scheduling, 2) using 

adaptive task migration threshold, and 3) considering cores 

physical features. This algorithm is evaluated on a commercial 

SMT quad-core processor. The experimental results indicate 

that our technique can significantly decrease the average and 

peak temperature compared to Linux standard scheduler, and 

two well-known thermal management techniques. 

 

I. Introduction 
 

As feature size is shrinking, the ability to have processors 

with larger number of cores is increasing. By advent of 

Simultaneous Multi-Threading (SMT), the multi-core 

processors can exploit more thread-level parallelism by less 

hardware compared to non-SMT multi-core processors. SMT 

multi-cores are becoming the main trend in the new 

generations of processors. However, due to increased density 

and complexity of these processors, the SMT multi-cores 

power consumption is increasing. The high power consumed 

in a small area die size results in increasing power density and 

generated temperature. Therefore, an expensive processor 

packaging and cooling equipment are needed to remove hot 

spots. Moreover, increasing temperature potentially threatens 

system reliability, decreases both transistor age and transition 

speed and increases leakage current [1]. Therefore, thermal 

management at all levels of system design is crucial. 

Dynamic Thermal Management (DTM) techniques are 

proposed to mitigate the aforementioned problems. DTM is a 

set of techniques that control processor temperature at run-

time so that temperature does not go beyond a certain value 

known as critical temperature threshold. The DTM techniques 

are available at both hardware (HW) and software (SW) 

levels. Although HW approaches, such as stop-and-go [1], 

clock gating [1], and Dynamic Voltage and Frequency Scaling 

(DVFS) [2-3], decrease temperature greatly, they lengthen 

execution time, thus degrading overall system performance. 

On the other hand, software-based DTM techniques such as 

task scheduling [3-4] and task migration [5-6] can reduce 

temperature without significant performance degradation and 

do not require extra hardware.  

Lately, researchers proposed different instruments and 

algorithms for core and application thermal measurement and 

prediction to manage processors temperature efficiently. Two 

well-known methods, named as CMOS thermal sensors and 

performance-counter-based (software-based) sensors [1] are 

used to measure and predict processor thermal pattern. 

Alongside, application thermal profiling and performance 

counters [1] are other two methods for application thermal 

categorization. Since application thermal profiling is an 

offline method, it cannot reflect the real thermal pattern of 

processors. Performance counters are usually used for online 

application temperature prediction, though they are 

inaccurate [7]. Moreover, reading different performance 

counters imposes significant overhead on application 

execution at run-time [1]. Therefore, recent proposed 

methods [8-9] model overall core and application temperature 

with aid of physical sensor and steady state temperature. 

Nevertheless, application and core temperature estimation of 

an off-the-shelf SMT multi-core processor based on only 

physical temperature sensors is inaccurate, because generally 

each core of an SMT multi-core processor has only one 

physical temperature sensor and it is hardly possible to know 

the real temperature of each thread.  

Among DTM techniques, some of them [3-4,7,10-12] are 

targeting temperature management of SMT processors, while 

others [5-9] do not leverage SMT capability. DTM techniques 

for SMT processor can be divided into two categories: a) 

algorithms [3,10-12] that are proposed and evaluated on 

simulators, and b) algorithms [4,7] that are proposed and 

evaluated on real platforms. 

Qiong et al. [3] introduce a simulation-based technique for 

parallel applications, called thread shuffling. This technique 

dynamically maps threads with similar criticality degrees into 

the same core and then applies DVFS to non-critical cores 

which execute fast threads. Their use of local DVFS restricts 

the proposed algorithm to only a few specific processors. 

Jeonghwan et al. [4] present a DTM method, so called Cool 

Loop technique for commercial single core SMT processors.  

Recent works predict future temperature core to reduce 

overheat temperature with negligible performance overhead. 

Their proactive task migration approaches estimate the future 

temperature using regression, and manage the workload to 

reduce and balance the temperature before reaching the 

temperature threshold. PDTM [8] is one of first attempts that 

predicts core temperature. The prediction is based on both 

application thermal and core thermal models. PDTM migrates 

applications from the possible overheated core to the future 

coolest core in order to maintain system temperature below a 

threshold temperature. On the other hand, TAS [9] categorizes 

applications according to their thermal behavior for 

improving accuracy of temperature prediction.  

Different cores of a processor do not have similar thermal 

behavior due to process variation [13], the temperature effect 

of core neighbors [2], and other physical issues [1]. The 

 



temperature difference among cores of a processor running 

the same application can be as much as 10∼15◦C [8]. In this 

paper we name these phenomena as physical features of cores. 

It means the cores of a single chip processor show different 

thermal behavior for the same workload.  

Motivated by these facts, we propose an algorithm which 

considers different thermal behavior of cores (physical 

features of cores) and uses both physical sensors and 

performance counters simultaneously to improve thermal 

management of SMT multi-core processor. We utilize 

physical sensor to estimate and predict the future temperature 

of cores and performance counter to classify the applications 

thermal behavior at runtime. Another unique feature of the 

proposed algorithm is that unlike all other proposed 

algorithms it has an adaptive migration threshold. To the best 

of authors’ knowledge, no prior attempt has been made to 

implement a thermal-aware task scheduling on a commercial 

SMT quad-core product (Core i7-3770) under Linux 

environment. The experimental results on Intel’s Core i7-

3770 running five to eight benchmarks indicate that our 

proposed method outperforms both Standard Linux scheduler, 

PTDM and TAS in reducing average and peak temperatures. 

The main contributions of this paper are summarized as 

follows: 

 We propose a thermal-aware scheduling for multi-core 

SMT supported processors based on different thermal 

behavior of cores due to their physical features. 

 Our experimental results on commercial processors 

indicate that our proposed approach, under full 

workloads, outperforms the Linux standard scheduler 

and two existing DTM techniques (PDTM, TAS). 

 There is no additional hardware unit required for our 

prediction model and thermal-aware algorithm. It 

means that our approach is scalable for all the 

multicore systems and can be applied to off-the-shelf 

SMT multi-core products. 

The reminder of this paper is organized as follows: The 

preliminaries of our algorithm are presented in Section 2. 

Section 3 describes our proposed algorithm. Implementation 

and analysis results are shown in Section 4 and finally 

conclusions are drawn in Section 5. 

 

II. Preliminary 
 

In this section, the preliminary of proposed algorithm is 

discussed.  

 

A. Problem description 

The system considered in this paper consists of an SMT 

multi-core processor with N cores, denoted as {core1, core2, 

…, coreN } which each core can execute up to two threads 

simultaneously. It is also assumed that there are N+1 to 2×N 

tasks for execution. The reason is that, since in this paper we 

focus on SMT feature of the processors, the number of tasks 

should be more than number of the physical cores so that 

using SMT capability makes sense. The problem discussed in 

this paper is how to schedule these tasks among cores 

dynamically such that the average and peak temperature of 

the system can be minimized under minimum performance 

loss and also temperature does not exceed Tmax. Tmax is the 

maximum allowable temperature. In this paper, we propose a 

heuristic method to solve the above problem based on task 

migration and DVFS. We first introduce a new temperature 

prediction method, which predicts the future temperature of a 

core by considering both core physical feature and workload 

of processor. Temperature management is activated when 

there is at least one core that reaches to Tthr in less than tres, 

where Tthr is the temperature threshold which triggers task 

migration to act and migrate applications to better cores in 

order to reduce the temperature, and tres is a constant that 

shows the response time for the algorithm to take an action to 

decrease the core temperature.  

 

B. Physical features of cores 

As mentioned earlier, the temperature of each core of a 

processor is different from other cores because of packaging 

technology [8], process variation [13] and the thermal effects 

of neighbor components [2]. Table I summarizes our 

experimental results of running different applications on four 

different cores of two Intel quad-core (Core i7-2600 and Core 

i7-3770) processors. This Table shows the thermal behavior 

of cores while one core executes an application and the others 

are idle while the fan speed is fixed. This experiment has been 

done for three applications. Note that the reported 

temperature is the maximum temperature among all four 

cores. As an instance, 71◦C is the peak temperature among all 

cores of Core i7-2600, when core 3 executes the bzip2 

benchmark. 

According to Table I, although all four cores have the same 

experimental setup, for Core i7-2600, core 3 and core 1 are 

always the hottest and coolest cores, respectively. We tried the 

same experiment with Core i7-3770 and we again observed 

this differential cores thermal behavior. As can be seen in 

Table I, core 2 and core 3 are the hottest and coolest cores 

respectively for Core i7-3770. This phenomenon, which we 

refer it as physical feature of multi-core processors, motivated 

us for our proposed DTM algorithm. In the rest of paper, we 

fully explain how we take advantage of physical feature to 

enhance the thermal management of SMT processors. 

 
TABLE I 

Temperature differential between cores. Results are extracted 

for Intel core i7-2600 and core i7-3770. 

Benchmark 

 

Intel Core i7-2600 

Executed 

on core 0 

Executed 

on core 1 

Executed 

on core 2 

Executed 

on core 3 

gcc 59◦C 58◦C 61◦C 64◦C 

hmmer 66◦C 62◦C 63◦C 66◦C 

bzip2 69◦C 67◦C 69◦C 71◦C 

 Intel Core i7-3770 

gcc 56◦C 56◦C 57◦C 55◦C 

hmmer 60◦C 60◦C 62◦C 58◦C 

bzip2 59◦C 59◦C 60◦C 58◦C 

C. Temperature prediction 

Our temperature predictor is modified version of [9]. Let 

assume Tss as steady state temperature of an application (The 

steady state temperature of an application is defined as 

temperature the system would reach if application is executed 

infinitely [8]). According to [9] the rate of temperature 

changes is proportional to difference between the current 



temperature and steady state temperature (Eq. 1): 

𝑑𝑇

𝑑𝑡
= 𝑐 × (𝑇𝑠𝑠 − 𝑇 ),  (1) 

where c is core-specific constants. We add a new parameter 

w to Eq. 1 to extract Eq. 2: 

𝑑𝑇

𝑑𝑡
= 𝑐 × 𝑤 × (𝑇𝑠𝑠 − 𝑇 ), (2) 

where w relates core activity. w is added to reflect the thermal 

effects of other cores that are active (running applications). 

The value of c, and w are determined offline using SPEC 

CPU2006 benchmarks. 

Solving Eq. 2, with T(0)=Tinit and T(∞)=Tss , we have: 

𝑇(𝑡) = 𝑇𝑆𝑆 − ( 𝑇𝑆𝑆 − 𝑇𝑖𝑛𝑖𝑡) ×  𝑒−𝑐×𝑤×𝑡. 

 

(3) 

Assigning T(t)=Tthr, we can obtain: 

𝑡𝑟 = 𝜇 × ln (
𝑇𝑠𝑠−𝑇𝑖𝑛𝑖𝑡

𝑇𝑡ℎ𝑟−𝑇𝑠𝑠
) ; 𝜇 =

1

𝑐×𝑤
. 

 

 

(4) 

tr is the predicted time when the core reaches Tthr. 

According to our experiments the values of Tss and c are 

different for each core. Therefore, the value of tr should be 

calculated for each core independently. Based on the value of 

tr the proposed algorithm decides when to start task migration 

and rescheduling. In the next section our proposed algorithm 

is fully discussed. 

 

III. Proposed Algorithm 

 
This section discusses the proposed algorithm for dynamic 

thermal management of SMT multi-core processors. In 

following subsections, different parts of algorithm are fully 

studied. 

The flowchart of the proposed algorithm is depicted in 

Fig.1. The main parts of algorithm are: Threshold 

Management, Temperature Management, and Performance 

Management. In threshold management part, Tthr is tuned 

according to both migration frequency (Migration#) and 

migration limitation (Migrationlimit). The migration limitation 

is the maximum allowable task migration that can happen 

during specific time intervals. In critical situation, the 

algorithm reschedules and moves tasks based on both 

application and core temperature. Again after rescheduling, tr 

for all cores are calculated, and if there is still one core in 

critical situation, it decreases the core frequency (fcur) to 

manage processor temperature. In performance management, 

if algorithm has not performed any migration in the recent 

past and current core frequency is lower than predefined 

minimum frequency (fmin), it increases core frequency to 

improve performance. In following subsection, the 

aforementioned parts are thoroughly studied. 

 

A.  Threshold Management 

Tthr can be affected dramatically by dynamic behavior of 

runtime workloads and different physical features of 

hardware platforms from one processor to another. Therefore 

finding a proper threshold is crucial. In this subsection, it is 

explained how the algorithm adjusts Tthr based on changes of 

workload behavior. If the total number of migrations in the 

last period is higher than Migrationlimit, Tthr increases and if 

the total number of migrations in the last period is lower than 

Migrationlimit, Tthr decreases. The higher the migration 

frequency, the more overall system performance degrades. 

Therefore, our proposed threshold management tries to 

control migration frequency and prevent it from increasing. 

Note that the higher temperature threshold causes the 

migration frequency to decrease. However, both temperature 

threshold and task migration increment deteriorate the overall 

system performance and reliability. Our proposed Threshold 

management finds a trade-off between temperature threshold 

and task migration regard to workload and core thermal 

behavior. 

B. Temperature Management 

A main challenge in task scheduling of SMT multi-core is 

co-scheduling of complement threads on individual SMT 

cores to make better use of shared pipeline resources in order 

to improve performance. However, this scheduling produces 

more temperature dissipation due to more pipeline resources 

utilization. [6] To overcome this problem we try five different 

strategies to determine which pairs of tasks increase 

performance while minimizing the average and peak 

temperature. Temperature management pairs and selects 

application based on their behavior and orders them from hot 

to cold one. 

Analyze the migration frequency
(Migration#)

Start

Migration#= 0

Increment(Tthr) Decrement(Tthr)

Predict tri (required time 
to reach Tthr) for corei

Is there at least 
one core:
 tri <= tres

Reschedule and migrate 
tasks

Decrement(fcur)

fcur <=fmin

And
(Migration#) = 0

Increment(fcur)

YES YES

YES YES

Threshold 
Management

Temperature 
Management

Performance 
Management

Predict tri (required time 
to reach Tthr) for corei

Is there at least 
one core:
 tri <= tresYES

Migration# 
>= 

Migrationlimit

&&
Tthr<TMax

 
Figure 1- The flowchart of the proposed PATM algorithm. 



Since most modern processors provide performance 

counters to allow monitoring of specific hardware events for 

the purpose of debugging and system tuning, in this paper 

performance counters are used to monitor the application 

behavior. The performance monitoring hardware broadly 

consists of event detectors and event counters. The event 

detectors can be configured to detect several hardware events, 

such as cache misses, pipeline stalls, branch misses, 

committed instructions, etc. We use Pearson Product-Moment 

Correlation Coefficient (PPMCC) or Pearson’s r [14] as a 

criterion to measure the correlation between two variables X 

and Y, where in our case X is the core temperature and Y is 

the number of events detected by performance counters. 

According to r coefficient, stalled-cycle-backend has the 

strongest correlation with core temperature. In section 4 the 

results of Pearson’s r correlation for different events detected 

by performance counters are fully presented. 
The five strategies are tried and their results are compared 

against Linux scheduler. In each strategy we executed 

selected programs (between 5 to 8 different benchmarks) 

simultaneously. At the first strategy, cores are sorted based on 

their temperature which is read by physical sensors and tasks 

are arranged based on stalled-cycle-backend events. After 

sorting cores and tasks, hottest and coolest tasks are paired 

and assigned to coldest core, second hottest and coolest task 

are again paired and assigned to second coolest core and this 

action is repeated. As mentioned earlier, the temperature of 

each core is different from each other (physical feature) and 

there are always hottest and coolest cores. Second strategy is 

similar to the first one, except that cores are sorted based on 

their physical feature. In our third strategy after sorting cores 

according to their physical features and tasks, first two hot 

tasks are assigned to coldest core. Fourth strategy is similar to 

the third scenario except that in assignment, first two cold 

tasks is assigned to coldest core. Since temperature 

management is activated when there is at least one corei that 

reach to Tthr in less than tres, instead of rescheduling all tasks 

similar to four previous strategy, our fifth strategy reschedules 

tasks between only critical core (ti < tres) and predicted cold 

core (tr > tres). In this strategy, the coolest core has the greatest 

tr among all cores. Task will be moved from hot core to cold 

core. Other cores which are not in critical mode will be 

unchanged. 

As can be seen from Fig.2 scenario 2 has the most average 

and peak temperature improvement but there is about 0.38% 

performance overhead. Scenario 1 improves the average and 

peak temperature less than scenario 2 but performance has 

increased about 0.76%.    

Since the problem of thermal-aware scheduling on multi-

core processors is a multi-objective optimization (MOO) 

problem, there is not unique solution and it can be vary from 

one purpose to another ones. Designers can use weighting 

approach technique for optimization problem (maximizing 

average and peak temperature improvement with minimum 

performance overhead) to decide which one of two first 

strategies satisfies their system demands. In the rest of this 

paper, we used scenario two. Fig.3 illustrate selected task 

scheduling strategy. 

After rescheduling tasks, tr is again predicted for all cores, 

and if there is still one core in critical situation, it means 

temperature management cannot perfectly manage core 

temperature at software level. At this moment, it uses DVFS 

technique to decreases the processor frequency. 

C. Performance Management 

As mentioned in previous section, if temperature 

management cannot improve critical situation, it decreases 

the processor frequency. Although this action decreases 

temperature significantly, it ruins overall system performance. 

Our performance management function mitigates this 

problem with the aid of checking the workload of cores. If the 

number of migrations is zero and current cores frequencies 

are lower than fmin, algorithm increases the global frequency 

to enhance system performance. 

 

IV. Experimental Results 
 

This section provides experimental results under heavy 

workload (between five to eight applications) of different 

applications from SPEC CPU2006 benchmarks. In the rest of 

this section we describe experiment environment and analyze 

the obtained results. 

 

A. Experimental Setup 

The selected benchmark programs are summarized in 

Table II. These benchmarks are executed simultaneously on 

the processor. The processor we use is an Intel Core i7-3770 

while the SMT capability of processors is activated. The size 

of the main memory of the system is 8 GB. The kernel version 

of Linux is 3.2.0. The LM sensor [15] application is used to 

read the temperature of the cores. We use cpufreq tool to 

adjust the processor frequency. In all of our experiments the 

fan speed has been fixed to a constant RPM (Rotation per 

Minutes). The value of tres, and migration# are set to 2 

   

 
Figure 2 - performance, average and peak temperature improvement of 

different strategies compared to Linux standard scheduler. 
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Figure 3 – Second task assignment strategy. 



seconds and 5 respectively, these values are selected 

empirical based on different experiments. fmin is set to 2 GHz 

because this is a frequency that if all cores are running 

applications, the maximum temperature will be less than 

critical temperature. Note that the value of w, and Tthr are 

adaptive and modified by algorithm at run-time. The other 

tentative constant of our algorithm is number of intervals for 

counting migration# is set to 10. The temperature threshold 

that we do not want to violate is 70◦C. 

 

B. Performance counter analysis 

Table III summarizes the correlations between core 

temperature and performance counter running ten 

benchmarks: gcc, libquantum, astar, bzip2, mcf, gobmk, sjeng, 

h264ref, perlbench, and hmmer.  

As can be seen from Table FF, since stalled-cycle-backend 

event has the strongest correlation (absolute value is 

considered) among other processor events, our proposed 

algorithm uses this event as a metric to analyze the thermal 

behavior of applications. The negative value implies that if X 

variable increases, Y will decrease. 
 

TABLE II 

Correlation between different events and core temperature. 

Events Correlation 

stalled-cycles-backend -0.37 

cache-references -0.35 

stalled-cycles-frontend -0.35 

cache-misses -0.33 

Cycles -0.29 

task-clock -0.24 

context-switches -0.03 

Branches -0.03 

page-faults -0.01 

branch-misses 0.02 

CPU-migrations 0.04 

Instructions 0.29 

IPC 0.30 

We set up an experiment to demonstrate the effect of 

choosing different events on final algorithm outputs. Fig 4 

illustrates the average temperature of four cores while task 

assigned by Linux standard scheduler and our proposed 

algorithm. For PATM, task assignment used stalled-cycle-

backend (high correlation), and page-faults (low correlation) 

as event to analyze application behavior and order them from 

hot to cold. As can been seen, using stalled-cycle-backend 

events can help algorithm to reduces temperature more 

efficiently. 

C. Adaptive threshold analysis 

For evaluating having adaptive threshold how much can 

improve temperature of system, we set up an experiment 

which at two state of fix and adaptive temperature threshold 

to extract amount of improvement at each state that depicted 

at Fig 5.   

D. Temperature prediction analysis 

 

Our temperature prediction model based on equation (2) 

predicts future temperature with less than 1◦C least square 

error on running different benchmarks. Fig.6 illustrates the 

accuracy of our prediction model against the real core 

temperature with only 0.679 ◦C mean absolute error on 

 
Figure 6 - The predicted model can estimate future temperature 

while its MAE is 0.679◦C. 
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Figure 5 - Comparison of our propose algorithms at two state of adaptive 

and non-adaptive threshold 
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Figure 4 - Comparison of average temperature of cores in our proposed 

algorithm at two state of using high and low correlation counter for 

application ordering and Linux standard scheduler by running 6 programs. 
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Table II 
SPEC CPU 2006 benchmarks used in experimental results 

Benchmarks hmmer libquantum sjeng perlbench gobmk gcc mcf bzip2 

Avg. Temperature(◦C) 68.2 67 65.7 65 63.9 63.9 63 62.9 

 



running bzip2 benchmark. 

E. Thermal management results 

 

Fig. 7 illustrates cores temperature for TAS, PDTM, Linux 

standard scheduler, and our proposed algorithm on an Intel 

core i7-3770. The temperatures are sampled every second.  

Running a different set of programs on Intel Core i7-3770, 

our proposed PATM reduces average temperature (average 

temperature of four cores from begin to end of running five 

benchmarks simultaneously) about 7.7% (3.6◦C), and reduces 

peak temperature about 13.9% (7.8◦C) with 1.7% 

performance (run-time) overhead compared to standard 

Linux scheduler. The experimental results also indicate that 

our proposed algorithm reduces average temperature about 

1.1% and 1.3% compared to TAS and PDTM, respectively. 

ATDTM reduces peak temperature about 8.1% and 5.8% 

compared to both TAS and PTDM. The overall system 

performance (run-time) overhead is only about only 1.3% and 

0.4% compared to TAS and PDTM. Table X summarizes the 

comparison results for these four algorithms. The reported 

results in Table III are mean values extracted from running 

five to eight benchmarks. 

Hence, by comparing with the Linux, PDTM, TAS 

scheduling method used  before, our proposed method  

indeed lead to more significant peak temperature reduction 

with only negligible performance overhead. 
TABLE III 

COMPARISON OF PROPOSED ALGORITHM AGAINST 

LINUX, TAS, AND PDTM. 

DTM Algorithm 

Average 

Temp. 

Max 

Temp. 

Run 

Time(Second) 

PDTM 47.9(◦C) 59(◦C) 924.8(Sec) 

TAS 47.8(◦C) 60(◦C) 916.8(Sec) 

PATM 47.3(◦C) 58(◦C) 928.3(Sec) 

Linux 50.9(◦C) 64(◦C) 912.5(Sec) 

Improvement of 

PATM vs. PDTM 1.3% 1.7% -0.4% 

Improvement of 

PATM vs. TAS 1.1% 3.9% -1.3% 

Improvement of 

PATM vs.  Linux 7.7% 9.5% -1.7% 

V. Conclusion and Future Work 

In this paper, a dynamic thermal management algorithm 

with a future temperature prediction for multicore SMT-

supported processor is presented. The proposed algorithm 

manages processor temperature in regard to workload and 

physical feature of cores. As demonstrated, physical feature 

and application ordering are extremely important in DTM and 

they have influence on performance and temperature 

management techniques. Experimental results based on 

practical benchmarks (SPEC CPU2006) running on a desktop 

platform (Intel Core i7-3770) indicate that our algorithm can 

overcome Linux standard scheduler, TAS, and PDTM with 

negligible performance overhead. For the future work, we 

will test our schemes in different platforms with various 

benchmarks such as JBB2005, and WEB2005 to verify their 

scalability in more general environment. 
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(a)                        (b)                               (c) 

Figure 7 - (a) aveeage temperature, (b) peak temperature and (c) run-time comparison of different algorithms with different number of programs. 
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