
A Physical-Aware Task Migration Algorithm for Dynamic Thermal Management of

SMT Multi-core Processors

Abstract - This paper presents a task migration algorithm for

dynamic thermal management of SMT multi-core processors.

The unique features of this algorithm include: 1) considering

SMT capability of the processors for task scheduling, 2) using

adaptive task migration threshold, and 3) considering cores

physical features. This algorithm is evaluated on a commercial

SMT quad-core processor. The experimental results indicate

that our technique can significantly decrease the average and

peak temperature compared to Linux standard scheduler, and

two well-known thermal management techniques.

I. Introduction

As feature size is shrinking, the ability to have processors

with larger number of cores is increasing. By advent of

Simultaneous Multi-Threading (SMT), the multi-core

processors can exploit more thread-level parallelism by less

hardware compared to non-SMT multi-core processors. SMT

multi-cores are becoming the main trend in the new

generations of processors. However, due to increased density

and complexity of these processors, the SMT multi-cores

power consumption is increasing. The high power consumed

in a small area die size results in increasing power density and

generated temperature. Therefore, an expensive processor

packaging and cooling equipment are needed to remove hot

spots. Moreover, increasing temperature potentially threatens

system reliability, decreases both transistor age and transition

speed and increases leakage current [1]. Therefore, thermal

management at all levels of system design is crucial.

Dynamic Thermal Management (DTM) techniques are

proposed to mitigate the aforementioned problems. DTM is a

set of techniques that control processor temperature at run-

time so that temperature does not go beyond a certain value

known as critical temperature threshold. The DTM techniques

are available at both hardware (HW) and software (SW)

levels. Although HW approaches, such as stop-and-go [1],

clock gating [1], and Dynamic Voltage and Frequency Scaling

(DVFS) [2-3], decrease temperature greatly, they lengthen

execution time, thus degrading overall system performance.

On the other hand, software-based DTM techniques such as

task scheduling [3-4] and task migration [5-6] can reduce

temperature without significant performance degradation and

do not require extra hardware.

Lately, researchers proposed different instruments and

algorithms for core and application thermal measurement and

prediction to manage processors temperature efficiently. Two

well-known methods, named as CMOS thermal sensors and

performance-counter-based (software-based) sensors [1] are

used to measure and predict processor thermal pattern.

Alongside, application thermal profiling and performance

counters [1] are other two methods for application thermal

categorization. Since application thermal profiling is an

offline method, it cannot reflect the real thermal pattern of

processors. Performance counters are usually used for online

application temperature prediction, though they are

inaccurate [7]. Moreover, reading different performance

counters imposes significant overhead on application

execution at run-time [1]. Therefore, recent proposed

methods [8-9] model overall core and application temperature

with aid of physical sensor and steady state temperature.

Nevertheless, application and core temperature estimation of

an off-the-shelf SMT multi-core processor based on only

physical temperature sensors is inaccurate, because generally

each core of an SMT multi-core processor has only one

physical temperature sensor and it is hardly possible to know

the real temperature of each thread.

Among DTM techniques, some of them [3-4,7,10-12] are

targeting temperature management of SMT processors, while

others [5-9] do not leverage SMT capability. DTM techniques

for SMT processor can be divided into two categories: a)

algorithms [3,10-12] that are proposed and evaluated on

simulators, and b) algorithms [4,7] that are proposed and

evaluated on real platforms.

Qiong et al. [3] introduce a simulation-based technique for

parallel applications, called thread shuffling. This technique

dynamically maps threads with similar criticality degrees into

the same core and then applies DVFS to non-critical cores

which execute fast threads. Their use of local DVFS restricts

the proposed algorithm to only a few specific processors.

Jeonghwan et al. [4] present a DTM method, so called Cool

Loop technique for commercial single core SMT processors.

Recent works predict future temperature core to reduce

overheat temperature with negligible performance overhead.

Their proactive task migration approaches estimate the future

temperature using regression, and manage the workload to

reduce and balance the temperature before reaching the

temperature threshold. PDTM [8] is one of first attempts that

predicts core temperature. The prediction is based on both

application thermal and core thermal models. PDTM migrates

applications from the possible overheated core to the future

coolest core in order to maintain system temperature below a

threshold temperature. On the other hand, TAS [9] categorizes

applications according to their thermal behavior for

improving accuracy of temperature prediction.

Different cores of a processor do not have similar thermal

behavior due to process variation [13], the temperature effect

of core neighbors [2], and other physical issues [1]. The

temperature difference among cores of a processor running

the same application can be as much as 10∼15◦C [8]. In this

paper we name these phenomena as physical features of cores.

It means the cores of a single chip processor show different

thermal behavior for the same workload.

Motivated by these facts, we propose an algorithm which

considers different thermal behavior of cores (physical

features of cores) and uses both physical sensors and

performance counters simultaneously to improve thermal

management of SMT multi-core processor. We utilize

physical sensor to estimate and predict the future temperature

of cores and performance counter to classify the applications

thermal behavior at runtime. Another unique feature of the

proposed algorithm is that unlike all other proposed

algorithms it has an adaptive migration threshold. To the best

of authors’ knowledge, no prior attempt has been made to

implement a thermal-aware task scheduling on a commercial

SMT quad-core product (Core i7-3770) under Linux

environment. The experimental results on Intel’s Core i7-

3770 running five to eight benchmarks indicate that our

proposed method outperforms both Standard Linux scheduler,

PTDM and TAS in reducing average and peak temperatures.

The main contributions of this paper are summarized as

follows:

 We propose a thermal-aware scheduling for multi-core

SMT supported processors based on different thermal

behavior of cores due to their physical features.

 Our experimental results on commercial processors

indicate that our proposed approach, under full

workloads, outperforms the Linux standard scheduler

and two existing DTM techniques (PDTM, TAS).

 There is no additional hardware unit required for our

prediction model and thermal-aware algorithm. It

means that our approach is scalable for all the

multicore systems and can be applied to off-the-shelf

SMT multi-core products.

The reminder of this paper is organized as follows: The

preliminaries of our algorithm are presented in Section 2.

Section 3 describes our proposed algorithm. Implementation

and analysis results are shown in Section 4 and finally

conclusions are drawn in Section 5.

II. Preliminary

In this section, the preliminary of proposed algorithm is

discussed.

A. Problem description

The system considered in this paper consists of an SMT

multi-core processor with N cores, denoted as {core1, core2,

…, coreN } which each core can execute up to two threads

simultaneously. It is also assumed that there are N+1 to 2×N

tasks for execution. The reason is that, since in this paper we

focus on SMT feature of the processors, the number of tasks

should be more than number of the physical cores so that

using SMT capability makes sense. The problem discussed in

this paper is how to schedule these tasks among cores

dynamically such that the average and peak temperature of

the system can be minimized under minimum performance

loss and also temperature does not exceed Tmax. Tmax is the

maximum allowable temperature. In this paper, we propose a

heuristic method to solve the above problem based on task

migration and DVFS. We first introduce a new temperature

prediction method, which predicts the future temperature of a

core by considering both core physical feature and workload

of processor. Temperature management is activated when

there is at least one core that reaches to Tthr in less than tres,

where Tthr is the temperature threshold which triggers task

migration to act and migrate applications to better cores in

order to reduce the temperature, and tres is a constant that

shows the response time for the algorithm to take an action to

decrease the core temperature.

B. Physical features of cores

As mentioned earlier, the temperature of each core of a

processor is different from other cores because of packaging

technology [8], process variation [13] and the thermal effects

of neighbor components [2]. Table I summarizes our

experimental results of running different applications on four

different cores of two Intel quad-core (Core i7-2600 and Core

i7-3770) processors. This Table shows the thermal behavior

of cores while one core executes an application and the others

are idle while the fan speed is fixed. This experiment has been

done for three applications. Note that the reported

temperature is the maximum temperature among all four

cores. As an instance, 71◦C is the peak temperature among all

cores of Core i7-2600, when core 3 executes the bzip2

benchmark.

According to Table I, although all four cores have the same

experimental setup, for Core i7-2600, core 3 and core 1 are

always the hottest and coolest cores, respectively. We tried the

same experiment with Core i7-3770 and we again observed

this differential cores thermal behavior. As can be seen in

Table I, core 2 and core 3 are the hottest and coolest cores

respectively for Core i7-3770. This phenomenon, which we

refer it as physical feature of multi-core processors, motivated

us for our proposed DTM algorithm. In the rest of paper, we

fully explain how we take advantage of physical feature to

enhance the thermal management of SMT processors.

TABLE I

Temperature differential between cores. Results are extracted

for Intel core i7-2600 and core i7-3770.

Benchmark

Intel Core i7-2600

Executed

on core 0

Executed

on core 1

Executed

on core 2

Executed

on core 3

gcc 59◦C 58◦C 61◦C 64◦C

hmmer 66◦C 62◦C 63◦C 66◦C

bzip2 69◦C 67◦C 69◦C 71◦C

 Intel Core i7-3770

gcc 56◦C 56◦C 57◦C 55◦C

hmmer 60◦C 60◦C 62◦C 58◦C

bzip2 59◦C 59◦C 60◦C 58◦C

C. Temperature prediction

Our temperature predictor is modified version of [9]. Let

assume Tss as steady state temperature of an application (The

steady state temperature of an application is defined as

temperature the system would reach if application is executed

infinitely [8]). According to [9] the rate of temperature

changes is proportional to difference between the current

temperature and steady state temperature (Eq. 1):

𝑑𝑇

𝑑𝑡
= 𝑐 × (𝑇𝑠𝑠 − 𝑇), (1)

where c is core-specific constants. We add a new parameter

w to Eq. 1 to extract Eq. 2:

𝑑𝑇

𝑑𝑡
= 𝑐 × 𝑤 × (𝑇𝑠𝑠 − 𝑇), (2)

where w relates core activity. w is added to reflect the thermal

effects of other cores that are active (running applications).

The value of c, and w are determined offline using SPEC

CPU2006 benchmarks.

Solving Eq. 2, with T(0)=Tinit and T(∞)=Tss , we have:

𝑇(𝑡) = 𝑇𝑆𝑆 − (𝑇𝑆𝑆 − 𝑇𝑖𝑛𝑖𝑡) × 𝑒−𝑐×𝑤×𝑡.

(3)

Assigning T(t)=Tthr, we can obtain:

𝑡𝑟 = 𝜇 × ln (
𝑇𝑠𝑠−𝑇𝑖𝑛𝑖𝑡

𝑇𝑡ℎ𝑟−𝑇𝑠𝑠
) ; 𝜇 =

1

𝑐×𝑤
.

(4)

tr is the predicted time when the core reaches Tthr.

According to our experiments the values of Tss and c are

different for each core. Therefore, the value of tr should be

calculated for each core independently. Based on the value of

tr the proposed algorithm decides when to start task migration

and rescheduling. In the next section our proposed algorithm

is fully discussed.

III. Proposed Algorithm

This section discusses the proposed algorithm for dynamic

thermal management of SMT multi-core processors. In

following subsections, different parts of algorithm are fully

studied.

The flowchart of the proposed algorithm is depicted in

Fig.1. The main parts of algorithm are: Threshold

Management, Temperature Management, and Performance

Management. In threshold management part, Tthr is tuned

according to both migration frequency (Migration#) and

migration limitation (Migrationlimit). The migration limitation

is the maximum allowable task migration that can happen

during specific time intervals. In critical situation, the

algorithm reschedules and moves tasks based on both

application and core temperature. Again after rescheduling, tr

for all cores are calculated, and if there is still one core in

critical situation, it decreases the core frequency (fcur) to

manage processor temperature. In performance management,

if algorithm has not performed any migration in the recent

past and current core frequency is lower than predefined

minimum frequency (fmin), it increases core frequency to

improve performance. In following subsection, the

aforementioned parts are thoroughly studied.

A. Threshold Management

Tthr can be affected dramatically by dynamic behavior of

runtime workloads and different physical features of

hardware platforms from one processor to another. Therefore

finding a proper threshold is crucial. In this subsection, it is

explained how the algorithm adjusts Tthr based on changes of

workload behavior. If the total number of migrations in the

last period is higher than Migrationlimit, Tthr increases and if

the total number of migrations in the last period is lower than

Migrationlimit, Tthr decreases. The higher the migration

frequency, the more overall system performance degrades.

Therefore, our proposed threshold management tries to

control migration frequency and prevent it from increasing.

Note that the higher temperature threshold causes the

migration frequency to decrease. However, both temperature

threshold and task migration increment deteriorate the overall

system performance and reliability. Our proposed Threshold

management finds a trade-off between temperature threshold

and task migration regard to workload and core thermal

behavior.

B. Temperature Management

A main challenge in task scheduling of SMT multi-core is

co-scheduling of complement threads on individual SMT

cores to make better use of shared pipeline resources in order

to improve performance. However, this scheduling produces

more temperature dissipation due to more pipeline resources

utilization. [6] To overcome this problem we try five different

strategies to determine which pairs of tasks increase

performance while minimizing the average and peak

temperature. Temperature management pairs and selects

application based on their behavior and orders them from hot

to cold one.

Analyze the migration frequency
(Migration#)

Start

Migration#= 0

Increment(Tthr) Decrement(Tthr)

Predict tri (required time
to reach Tthr) for corei

Is there at least
one core:
 tri <= tres

Reschedule and migrate
tasks

Decrement(fcur)

fcur <=fmin

And
(Migration#) = 0

Increment(fcur)

YES YES

YES YES

Threshold
Management

Temperature
Management

Performance
Management

Predict tri (required time
to reach Tthr) for corei

Is there at least
one core:
 tri <= tresYES

Migration#
>=

Migrationlimit

&&
Tthr<TMax

Figure 1- The flowchart of the proposed PATM algorithm.

Since most modern processors provide performance

counters to allow monitoring of specific hardware events for

the purpose of debugging and system tuning, in this paper

performance counters are used to monitor the application

behavior. The performance monitoring hardware broadly

consists of event detectors and event counters. The event

detectors can be configured to detect several hardware events,

such as cache misses, pipeline stalls, branch misses,

committed instructions, etc. We use Pearson Product-Moment

Correlation Coefficient (PPMCC) or Pearson’s r [14] as a

criterion to measure the correlation between two variables X

and Y, where in our case X is the core temperature and Y is

the number of events detected by performance counters.

According to r coefficient, stalled-cycle-backend has the

strongest correlation with core temperature. In section 4 the

results of Pearson’s r correlation for different events detected

by performance counters are fully presented.
The five strategies are tried and their results are compared

against Linux scheduler. In each strategy we executed

selected programs (between 5 to 8 different benchmarks)

simultaneously. At the first strategy, cores are sorted based on

their temperature which is read by physical sensors and tasks

are arranged based on stalled-cycle-backend events. After

sorting cores and tasks, hottest and coolest tasks are paired

and assigned to coldest core, second hottest and coolest task

are again paired and assigned to second coolest core and this

action is repeated. As mentioned earlier, the temperature of

each core is different from each other (physical feature) and

there are always hottest and coolest cores. Second strategy is

similar to the first one, except that cores are sorted based on

their physical feature. In our third strategy after sorting cores

according to their physical features and tasks, first two hot

tasks are assigned to coldest core. Fourth strategy is similar to

the third scenario except that in assignment, first two cold

tasks is assigned to coldest core. Since temperature

management is activated when there is at least one corei that

reach to Tthr in less than tres, instead of rescheduling all tasks

similar to four previous strategy, our fifth strategy reschedules

tasks between only critical core (ti < tres) and predicted cold

core (tr > tres). In this strategy, the coolest core has the greatest

tr among all cores. Task will be moved from hot core to cold

core. Other cores which are not in critical mode will be

unchanged.

As can be seen from Fig.2 scenario 2 has the most average

and peak temperature improvement but there is about 0.38%

performance overhead. Scenario 1 improves the average and

peak temperature less than scenario 2 but performance has

increased about 0.76%.

Since the problem of thermal-aware scheduling on multi-

core processors is a multi-objective optimization (MOO)

problem, there is not unique solution and it can be vary from

one purpose to another ones. Designers can use weighting

approach technique for optimization problem (maximizing

average and peak temperature improvement with minimum

performance overhead) to decide which one of two first

strategies satisfies their system demands. In the rest of this

paper, we used scenario two. Fig.3 illustrate selected task

scheduling strategy.

After rescheduling tasks, tr is again predicted for all cores,

and if there is still one core in critical situation, it means

temperature management cannot perfectly manage core

temperature at software level. At this moment, it uses DVFS

technique to decreases the processor frequency.

C. Performance Management

As mentioned in previous section, if temperature

management cannot improve critical situation, it decreases

the processor frequency. Although this action decreases

temperature significantly, it ruins overall system performance.

Our performance management function mitigates this

problem with the aid of checking the workload of cores. If the

number of migrations is zero and current cores frequencies

are lower than fmin, algorithm increases the global frequency

to enhance system performance.

IV. Experimental Results

This section provides experimental results under heavy

workload (between five to eight applications) of different

applications from SPEC CPU2006 benchmarks. In the rest of

this section we describe experiment environment and analyze

the obtained results.

A. Experimental Setup

The selected benchmark programs are summarized in

Table II. These benchmarks are executed simultaneously on

the processor. The processor we use is an Intel Core i7-3770

while the SMT capability of processors is activated. The size

of the main memory of the system is 8 GB. The kernel version

of Linux is 3.2.0. The LM sensor [15] application is used to

read the temperature of the cores. We use cpufreq tool to

adjust the processor frequency. In all of our experiments the

fan speed has been fixed to a constant RPM (Rotation per

Minutes). The value of tres, and migration# are set to 2

Figure 2 - performance, average and peak temperature improvement of

different strategies compared to Linux standard scheduler.

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5
-2

0

2

4

6

8

10

12

14

Im
p
ro

v
e
m

e
n
t(

%
)

AverageTemperature

PeakTemperature

Performance

Aggregated Objective Function

Sorted from cold to hot

Core 3 Core 0 Core 1 Core 2

Core 3 Core 0 Core 1 Core 2

Task 1
01001001
00100100
10001010
11100100
10011011

Task 5
01100111
00101101
10110010
10000100
10110011

Task 3
01010001
00100100
10000101
10101010
10010101

Task 0
01111001
00111000
01111010
11010100
10011011

Task 2
01110011
00100100
10000010
10110100
10001011

Task 6
11100101
00100010
11101001
00100100
10000100

Task 7
00101001
00111000
10010001
00101110
01101010

Task 4
01010010
10010010
10001010
10101010
00100101

Task 1
01001001
00100100
10001010
11100100
10011011

Task 3
01010001
00100100
10000101
10101010
10010101

Task 0
01111001
00111000
01111010
11010100
10011011

Task 2
01110011
00100100
10000010
10110100
10001011

Task 4
01010010
10010010
10001010
10101010
00100101

Task 7
00101001
00111000
10010001
00101110
01101010

Task 6
11100101
00100010
11101001
00100100
10000100

Task 5
01100111
00101101
10110010
10000100
10110011

Figure 3 – Second task assignment strategy.

seconds and 5 respectively, these values are selected

empirical based on different experiments. fmin is set to 2 GHz

because this is a frequency that if all cores are running

applications, the maximum temperature will be less than

critical temperature. Note that the value of w, and Tthr are

adaptive and modified by algorithm at run-time. The other

tentative constant of our algorithm is number of intervals for

counting migration# is set to 10. The temperature threshold

that we do not want to violate is 70◦C.

B. Performance counter analysis

Table III summarizes the correlations between core

temperature and performance counter running ten

benchmarks: gcc, libquantum, astar, bzip2, mcf, gobmk, sjeng,

h264ref, perlbench, and hmmer.

As can be seen from Table FF, since stalled-cycle-backend

event has the strongest correlation (absolute value is

considered) among other processor events, our proposed

algorithm uses this event as a metric to analyze the thermal

behavior of applications. The negative value implies that if X

variable increases, Y will decrease.

TABLE II

Correlation between different events and core temperature.

Events Correlation

stalled-cycles-backend -0.37

cache-references -0.35

stalled-cycles-frontend -0.35

cache-misses -0.33

Cycles -0.29

task-clock -0.24

context-switches -0.03

Branches -0.03

page-faults -0.01

branch-misses 0.02

CPU-migrations 0.04

Instructions 0.29

IPC 0.30

We set up an experiment to demonstrate the effect of

choosing different events on final algorithm outputs. Fig 4

illustrates the average temperature of four cores while task

assigned by Linux standard scheduler and our proposed

algorithm. For PATM, task assignment used stalled-cycle-

backend (high correlation), and page-faults (low correlation)

as event to analyze application behavior and order them from

hot to cold. As can been seen, using stalled-cycle-backend

events can help algorithm to reduces temperature more

efficiently.

C. Adaptive threshold analysis

For evaluating having adaptive threshold how much can

improve temperature of system, we set up an experiment

which at two state of fix and adaptive temperature threshold

to extract amount of improvement at each state that depicted

at Fig 5.

D. Temperature prediction analysis

Our temperature prediction model based on equation (2)

predicts future temperature with less than 1◦C least square

error on running different benchmarks. Fig.6 illustrates the

accuracy of our prediction model against the real core

temperature with only 0.679 ◦C mean absolute error on

Figure 6 - The predicted model can estimate future temperature

while its MAE is 0.679◦C.

0 50 100 150 200 250 300
45

50

55

60

65

T
e
m

p
e
ra

tu
re

(
C

)

Time(sec)

actual

prediction

Figure 5 - Comparison of our propose algorithms at two state of adaptive

and non-adaptive threshold

0 100 200 300 400 500 600
40

45

50

55

60

T
e
m

p
e
ra

tu
re

(
C

)

Time(sec)

(d)

PATM Non-Adaptive Threshold

PATM Adaptive Threshold

Figure 4 - Comparison of average temperature of cores in our proposed

algorithm at two state of using high and low correlation counter for

application ordering and Linux standard scheduler by running 6 programs.

0 10 20 30 40 50 60 70 80
35

40

45

50

55

60

T
e
m

p
e
ra

tu
re

(
C

)

Time(sec)

(d)

PATM-Low Correlation

PATM-High Correlation

Linux

Table II
SPEC CPU 2006 benchmarks used in experimental results

Benchmarks hmmer libquantum sjeng perlbench gobmk gcc mcf bzip2

Avg. Temperature(◦C) 68.2 67 65.7 65 63.9 63.9 63 62.9

running bzip2 benchmark.

E. Thermal management results

Fig. 7 illustrates cores temperature for TAS, PDTM, Linux

standard scheduler, and our proposed algorithm on an Intel

core i7-3770. The temperatures are sampled every second.

Running a different set of programs on Intel Core i7-3770,

our proposed PATM reduces average temperature (average

temperature of four cores from begin to end of running five

benchmarks simultaneously) about 7.7% (3.6◦C), and reduces

peak temperature about 13.9% (7.8◦C) with 1.7%

performance (run-time) overhead compared to standard

Linux scheduler. The experimental results also indicate that

our proposed algorithm reduces average temperature about

1.1% and 1.3% compared to TAS and PDTM, respectively.

ATDTM reduces peak temperature about 8.1% and 5.8%

compared to both TAS and PTDM. The overall system

performance (run-time) overhead is only about only 1.3% and

0.4% compared to TAS and PDTM. Table X summarizes the

comparison results for these four algorithms. The reported

results in Table III are mean values extracted from running

five to eight benchmarks.

Hence, by comparing with the Linux, PDTM, TAS

scheduling method used before, our proposed method

indeed lead to more significant peak temperature reduction

with only negligible performance overhead.
TABLE III

COMPARISON OF PROPOSED ALGORITHM AGAINST

LINUX, TAS, AND PDTM.

DTM Algorithm

Average

Temp.

Max

Temp.

Run

Time(Second)

PDTM 47.9(◦C) 59(◦C) 924.8(Sec)

TAS 47.8(◦C) 60(◦C) 916.8(Sec)

PATM 47.3(◦C) 58(◦C) 928.3(Sec)

Linux 50.9(◦C) 64(◦C) 912.5(Sec)

Improvement of

PATM vs. PDTM 1.3% 1.7% -0.4%

Improvement of

PATM vs. TAS 1.1% 3.9% -1.3%

Improvement of

PATM vs. Linux 7.7% 9.5% -1.7%

V. Conclusion and Future Work

In this paper, a dynamic thermal management algorithm

with a future temperature prediction for multicore SMT-

supported processor is presented. The proposed algorithm

manages processor temperature in regard to workload and

physical feature of cores. As demonstrated, physical feature

and application ordering are extremely important in DTM and

they have influence on performance and temperature

management techniques. Experimental results based on

practical benchmarks (SPEC CPU2006) running on a desktop

platform (Intel Core i7-3770) indicate that our algorithm can

overcome Linux standard scheduler, TAS, and PDTM with

negligible performance overhead. For the future work, we

will test our schemes in different platforms with various

benchmarks such as JBB2005, and WEB2005 to verify their

scalability in more general environment.

References

[1] J. Kong, SW Chung, and K. Skadron, “Recent thermal

management techniques for microprocessors,” ACM Computer

Survey, vol. 44, no. 3, pp. 13:1-13:42, 2012.

[2] G. Liu, M. Fan, and G. Quan, “Neighbor-aware dynamic thermal

management for multi-core platform,” in DATE, pp. 187–192,

2012.

[3] Q. Cai, J. Gonzalez, G. Magklis, P. Chaparro, and A. Gonzalez,

“Thread shuffling: Combining DVFS and thread migration to

reduce energy consumptions for multi-core systems,” in Proc. of

ISLPED, pp. 379-384, 2011.

[4] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, P. Bose,

“Thermal-aware task scheduling at the system software level,”

in ISLPED, pp. 213-218, 2007.

[5] Z. Liu, T. Xu, S.X.-D. Tan, and H. Wang “Dynamic thermal

management for multi-core microprocessors considering

transient thermal effects,” in ASP-DAC. 2013.

[6] M. Gomaa, M. D. Powell, and T. N. Vijaykuma, “Heat-and-run:

leveraging SMT and CMP to manage power density through the

operating system,” in ASPLOS, pp. 260-270, 2004.

[7] A. Kumar, L. Shang, L. Peh, and N.K. Jha, “HybDTM: a

coordinated hardware-software approach for dynamic thermal

management,” in DAC, pp. 548-553, 2006.

[8] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal

management for multicore systems,” in DAC, pp. 734-739, 2008.

[9] I. Yeo, E. Jung Kim, “Temperature-aware scheduler based on

thermal behavior grouping in multicore systems,” in DATE, pp.

946-951, 2009.

[10] J. Donald, and M. Martonosi, “Leveraging Simultaneous

Multithreading for Adaptive Thermal Control,” Workshop on

Temperature-Aware Computing Systems, 2005.

[11] J. Donald , M. Martonosi, “Temperature-aware design issues

for smt and cmp architectures,” In Proceedings of the Workshop

on Complexity-Effective Design (WCED). ACM Press, 2004.

[12] J. Donald , M. Martonosi, “Heat-and-run: leveraging smt and

cmp to manage power density through the operating system,”

SIGOPS Oper. Syst. Rev., vol. 38, 2004.

[13]Kursun, Eren, and Chen-Yong Cher. “Variation-aware thermal

characterization and management of multi-core architectures,”

in ICCD 2008, pp. 280-285, 2008.

[14] L. Rodgers, Joseph, and W.A. Nicewander. “Thirteen ways to

look at the correlation coefficient,” The American Statistician 42.

no 1, pp. 59-66, 1988.

[15]Lm sensors linux hardware monitoring [Online]. Available:

http://www.lm-sensors.org.

(a) (b) (c)

Figure 7 - (a) aveeage temperature, (b) peak temperature and (c) run-time comparison of different algorithms with different number of programs.

5 Program 6 Program 7 Program 8 Program
40

42

44

46

48

50

52

54

56

58

60

T
e

m
p

e
ra

tu
re

(
C

)

Linux

TAS

PDTM

PATM

5 Program 6 Program 7 Program 8 Program
50

52

54

56

58

60

62

64

66

68

70

T
e

m
p

e
ra

tu
re

(
C

)

Linux

TAS

PDTM

PATM

5 Program 6 Program 7 Program 8 Program
880

890

900

910

920

930

940

950

960

T
im

e
(

S
e

c
o

n
d

)

Linux

TAS

PDTM

PATM

