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The high mortality of cephalopod early stages is the main bottleneck to grow them from

paralarvae to adults in culture conditions, probably because the inadequacy of the diet

that results in malnutrition. Since visual analysis of digestive tract contents of paralarvae

provides little evidence of diet composition, the use of molecular tools, particularly

next generation sequencing (NGS) platforms, offers an alternative to understand prey

preferences and nutrient requirements of wild paralarvae. In this work, we aimed to

determine the diet of paralarvae of the loliginid squid Alloteuthis media and to enhance

the knowledge of the diet of recently hatched Octopus vulgaris paralarvae collected in

different areas and seasons in an upwelling area (NW Spain). DNA from the dissected

digestive glands of 32 A. media and 64O. vulgaris paralarvae was amplified with universal

primers for the mitochondrial gene COI, and specific primers targeting the mitochondrial

gene 16S gene of arthropods and the mitochondrial gene 16S of Chordata. Following

high-throughput DNA sequencing with the MiSeq run (Illumina), up to 4,124,464 reads

were obtained and 234,090 reads of prey were successfully identified in 96.87 and

81.25% of octopus and squid paralarvae, respectively. Overall, we identified 122

Molecular Taxonomic Units (MOTUs) belonging to several taxa of decapods, copepods,

euphausiids, amphipods, echinoderms, molluscs, and hydroids. Redundancy analysis

(RDA) showed seasonal and spatial variability in the diet of O. vulgaris and spatial

variability in A.media diet. General AdditiveModels (GAM) of themost frequently detected

prey families of O. vulgaris revealed seasonal variability of the presence of copepods

(family Paracalanidae) and ophiuroids (family Euryalidae), spatial variability in presence

of crabs (family Pilumnidae) and preference in small individual octopus paralarvae for

cladocerans (family Sididae) and ophiuroids. No statistically significant variation in the

occurrences of the most frequently identified families was revealed in A. media. Overall,

these results provide new clues about dietary preferences of wild cephalopod paralarvae,

thus opening up new scenarios for research on trophic ecology and digestive physiology

under controlled conditions.
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INTRODUCTION

Historically, cephalopods in European waters have always been
viewed as a minor fisheries resource (Pierce et al., 2010).
However, they can be of considerable local economic importance,
especially in southern Europe’s artisanal fisheries. Galician waters
(NW Spain) support an economically important cephalopod
fishery for Octopus vulgaris (Otero et al., 2006; Pita et al., 2016)
and loliginid squid, mainly Loligo vulgaris but also Alloteuthis
media and Alloteuthis subulata (Jereb et al., 2015), species that
are not easily distinguished due to the similarity of their external
characters (Jereb et al., 2010). Reflecting the short life cycle
and rapid individual growth rates, cephalopod populations are
sensitive to effects of environmental variation on reproduction
and recruitment (Boyle, 1990; Boyle and Rodhouse, 2005; Pierce
et al., 2008; Hastie et al., 2009; Rodhouse et al., 2014), resulting
in wide year to year fluctuations in captures. From 2000 to 2013,
reported cephalopod landings in Europe varied from a minimum
of 38,600 tons in 2009 to a maximum of 55,500 tons in 2004
(ICES, 2014).

In recent years, there has been growing interest in the
culture of cephalopods, primarily for human consumption, due
to their high growth rates, high protein contents, and high ratios
of food conversion and short life cycles (Segawa, 1990; Lee,
1995; Villanueva and Bustamante, 2006). Bearing in mind the
variability of the wild cephalopod resources, there is a need for
a stable and reliable source of cephalopods. Additional impetus
for captive rearing arises from the use of cephalopods as model
organisms in biomedical science (Bullock, 1948; Hanlon, 1990;
Fiorito and Scotto, 1992; Calisti et al., 2011) and for ornamental
purposes (Dunstan et al., 2010; Rodhouse et al., 2014). Despite
progress in cephalopod culture methods (e.g., Iglesias et al.,
2014), cephalopod species with planktonic stages have very low
survival rates of paralarvae in captive conditions (Villanueva
and Norman, 2008). Therefore, rearing relies on wild captured
juveniles, subadults, and adults, preventing commercial viability
(Hernández Moresino et al., 2014; Xavier et al., 2015).

Juvenile and sub-adult cephalopods are mainly fed with live
prey, including crustaceans, fishes, and mollusks (Domingues
et al., 2004; García García and Cerezo Valverde, 2006; Sykes et al.,
2013), fisheries discards (Socorro et al., 2005; Estefanell et al.,
2011), frozen prey (Ferreira et al., 2010; Sykes et al., 2013), or
artificial feed stuffs (Garcia et al., 2011; Estefanell et al., 2013).
Paralarvae in captivity have been traditionally fed with enriched
Artemia (Iglesias et al., 2006) or supplemented with decapod
zoeae, copepods, mysids, shrimps, or fish larvae, which increases
survival and growth rates (Hernández-García et al., 2000; Iglesias
et al., 2004, 2006; Ikeda et al., 2005; Carrasco et al., 2006; Kurihara
et al., 2006; Martínez et al., 2014; Farías et al., 2015). Despite all
previous attempts, cephalopod paralarval mortality is still close
to 100% in captivity.

It has been suggested that the high mortality of paralarvae
in captivity is due to a lack of knowledge regarding the
physiology and nutrition of paralarvae (Domingues et al.,
2003; Villanueva et al., 2009; Garrido et al., 2016a) or the
lack of a suitable diet meeting all micronutrient requirements
(Iglesias et al., 2007). Several experiments have shown that

feeding new born paralarvae with different diet can influence
its survival (Villanueva, 1994; Iglesias et al., 2004; Farías et al.,
2015). Moreover, physiological changes in digestive gland lipid
composition (Garcia et al., 2011) and higher proteolytic activity
were observed in paralarvae fed on other zooplankton organisms,
rather than Artemia (Pereda et al., 2009).

Moreover, laboratory experiments have shown that hatchlings
present restricted swimming capacity and prey hunting skills.
They progressively develop the ability to capture different
zooplankton prey (Hanlon, 1990; Chen et al., 1996), suggesting
the necessity to adapt their diet at their different stages.
Thus, increasing the knowledge of dietary preferences of wild
cephalopod paralarvae and ontogenetic dietary changes over the
course of their early development could help to design a suitable
diet for rearing in captivity.

A few investigations have analyzed the diet of wild paralarvae
by visual identification of stomach contents, revealing that they
mainly fed on copepods (Illex argentinus, Vidal and Haimovici,
1998), amphipods (Ommastrephes bartramii, Uchikawa et al.,
2009), and other crustaceans (Abralia trigonura and Sthenoteuthis
oualaniensis; Vecchione, 1991). However, a high proportion of
stomach contents comprises unrecognizable soft material (Roura
et al., 2012; Camarillo-Coop et al., 2013) or small pieces of
exoskeleton (Passarella and Hopkins, 1991; Vecchione, 1991;
Vidal and Haimovici, 1999). Alternative approaches have also
been attempted: Specific prey species of Loligo reynaudii were
detected by applying immunoassays (Venter et al., 1999) and
in O. vulgaris paralarvae up to 20 different prey were detected
cloning PCR products with group-specific primers (Roura et al.,
2012). However, these methods are costly and time-consuming,
and thus can only be applied to a limited number of samples and
clones sequenced.

Zooplankton communities in the Ría de Vigo (NW Iberian
Peninsula) are highly dynamic, presenting rapid changes in
species composition and abundance according to environmental
conditions (Roura et al., 2013; Buttay et al., 2015). Previous
research suggests that O. vulgaris paralarvae are specialist
predators, eating decapods independently of the zooplankton
communities they inhabit (Roura et al., 2016). However, a
specialist diet focusing on low abundance prey could lead to
starvation and death. It is therefore expected that cephalopod
paralarvae have certain degree of plasticity in terms of the
different prey they can capture, based on their hunting abilities,
and that they also eat prey species that have not been yet detected
in their diet.

The development of next generation sequencing (NGS) has
permitted the elucidation of the diet of a wide variety of animal
species including vertebrates and invertebrates (King et al., 2008;
Boyer et al., 2013; Leray et al., 2013b). These techniques are
more efficient and, in many cases, less costly than traditional diet
analysis in terms of time and prey species resolution (Pompanon
et al., 2012). Thus, NGS could be applied to reveal previously
undetected prey species of cephalopod paralarvae and to extend
dietary analysis to a higher number of paralarvae.

Therefore, the aim of this study was to develop a NGS
approach to provide a detailed analysis of the diet of the
paralarvae of the two cephalopod species most abundant in the
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plankton in NW Iberian Peninsula. First of all, we describe for
the first time the diet of paralarvae of Alloteuthis media, and
secondly, we present new information on the dietary preferences
of paralarvae of O. vulgaris in the coastal environment.
Environmental conditions (such as season and feeding area)
affecting paralarval prey preferences are also assessed. Diet is
thought to be the main factor affecting paralarval survival and
determining diet is an essential step toward understanding the
physiological status of healthy paralarvae, knowledge, which
can then be transferred to increase their survival in captive
conditions.

MATERIALS AND METHODS

This study was performed in accordance with existing Spanish
guidelines and regulations on animal research (Ley 32/2007,
November 7th), and was consequently exempt from an ethics
review process.

Sample Collection
Zooplankton samples were collected in the Ría de Vigo (NW
Spain) onboard RV “Mytilus” in 2012 and 2014. The timing of the
sampling was based on previously identified periods of maximum
paralarval abundance (Rocha et al., 1999; González et al., 2005)
in 2012 and 2014: we carried out ten nocturnal surveys each
year, four in summer (July), and six in early autumn (September
and October). Additionally, diurnal surveys were conducted
in summer and in autumn 2012 (one per season). Sampling
surveys were conducted along four transects (Figure 1A). For
each transect, a Multinet R© Hydrobios Mammoth of 250 µm
mesh size, fitted with two electronic flow meters, was lowered at
2.5 knots to the sea floor and lifted up gradually to the surface.
We defined seven depth layers: from 105 to 85 m, Z7; 85 to 55 m,
Z6; 55 to 35 m, Z5; 35 to 20 m, Z4; 20 to 10 m, Z3; 10 to 5 m,
Z2; and 5m to the surface, Z1; see Figure 1B). Within each layer,
the Multinet R© filtered up to 200 m3 of seawater (approximately
from 5–10 min for each layer and hence in total between 20
and 70 min), and collected independent samples. The collected
zooplankton was fixed onboard in 96% ethanol and frozen at
−20◦C until sorting. In the laboratory, all cephalopod paralarvae
were separated and preserved individually in 70% ethanol and
stored at−20◦C.

Identification of Paralarvae and
Morphological Measurements
Dorsal mantle length (DML) was measured to the nearest 0.05
mm on the dorsal side of all octopus and squid paralarvae
using a Leica M205C stereomicroscope and Leica Application
System image analysis software (Leica Microsystems, Germany).
All octopus paralarvae (n = 492) were identified as O. vulgaris
based on morphological characters following Sweeney et al.
(1992). Due to the difficulty of identifying squid paralarvae
using morphological characters, all loliginid paralarvae (n =

163) were identified genetically. Molecular identification relies
on previous work with adult specimens identified morphological
and subsequently genetically.

Briefly, DNA from the mantle of each loliginid paralarva was
extracted with a QIAamp DNA Micro Kit (QIAGEN) following
manufacturer’s instructions, with the exception of two steps:
Digestion at 56◦C was done overnight and the final elution
was done in two steps using 15 µl buffer AE in each elution.
The barcoding region of the Cytochrome c Oxidase subunit I
(COI) was amplified with the universal primers HCO2198 and
LCO1490 (Folmer et al., 1994) and PCR products were sequenced
by Sanger sequencing (Stab Vida, Portugal). Each sequence
was compared to the following GenBank reference sequences
using the BLAST algorithm (Altschul, 2014): Alloteuthis media,
EU668085 (Anderson et al., 2008); A. subulata EU668098
(Anderson et al., 2008), and L. vulgaris, KF369142 (Lobo et al.,
2013).

Loliginid paralarvae were identified as A. media (n = 93),
A. subulata (n = 35), and L. vulgaris (n = 22) (Olmos-Pérez
et al., unpublished data). For dietary analysis, a total of 64 O.
vulgaris paralarvae (summer, n = 26; autumn, n = 38) and 32
A. media (summer, n = 16; autumn, n = 16) were selected.
Alloteuthis mediawas selected formolecular diet analyses because
it was the most abundant loliginid present. Samples were chosen
to maximize information from different seasons, transects and
depth.

Digestive Gland Dissection, DNA
Extraction, and Prey Detection
Digestive glands of all 96 paralarvae were dissected out,
cleaned with sterile distilled water and placed into DNA-
free tubes (Suzuki et al., 2006). DNA was extracted with
a QIAamp DNA Micro Kit (QIAGEN, Hilden, Germany)
following the modifications in the elution step as stated before.
DNA purity and concentration were controlled with NanoDrop
2000c UV-Vis Spectrophotometer (Thermo Fisher Scientific Inc.,
Massachusetts, USA).

Many dietary studies recommend the use of restriction
enzymes (Blankenship and Yayanos, 2005) or blocking primers
(Vestheim and Jarman, 2008; Deagle et al., 2009; Leray et al.,
2013a) to avoid amplifying predator DNA and maximize
detection of prey DNA. However, the huge number of sequences
currently obtained with NGS platforms allows the use of
universal primers that facilitate the detection of unexpected prey
(Boyer et al., 2013) without the necessity of using restriction
enzymes or blocking probes (Piñol et al., 2014). Accordingly,
we employed the universal pair of primers HCO2198 (Folmer
et al., 1994) and mlCOIintF (Leray et al., 2013b), to amplify 315
base pairs (bp) of the barcoding region of the mitochondrial
cytochrome c oxidase subunit I (mt-COI) gene (Table 1).
Cycling conditions for the touch-down PCR with COI primers
were: initial denaturation at 95◦C 3 min, 10 initial cycles of
denaturation at 95◦C for 30 s, annealing for 30 s at 57 (−1◦C
per cycle), and extension at 72◦C for 40 s, followed by 29 cycles
of denaturation at 95◦C for 30 s, annealing at 47◦C for 30 s,
extension at 72◦C for 40 s, and a final elongation for 4 min at
72◦C. PCR amplification was performed in a total volume of 25
µl:1 µl (10 µM) of each forward and reverse primers, 12.5 µl
Thermo ScientificTM PhusionTM High-Fidelity PCR Master Mix
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FIGURE 1 | (A) Map of the study area showing the four transects performed in 2012 and 2014. (B) Depth layers sampled for each different transects.

TABLE 1 | All of them amplify different regions of mitochondrial (mt) DNA. Product size (bp): Approximate product size of each PCR product (without

overhang) expressed as number of base pairs (bp).

Gen Target Forward Reverse Product size (bp) References

mt-COI Universal ml COIintFa HCO2198b 315 Folmer et al., 1994b;

Leray et al., 2013baGGWACWGGWTGAACWGTWTAYCCYCC TAAACTTCAGGGTGACCAAAAAATCA

mt-16Sa Malacostraca 16S1F* 16S2R* 205 Deagle et al., 2005

TGACGATAAGACCCT CGCTGTTATCCCTAAAGTAACT

mt-16Sb Chordata Chord_16S_F_TagA Chord_16 s_R_Short 155 Deagle et al., 2009

ATGCGAGAAGACCCTRTGGAGCT CCTNGGTCGCCCCAAC

*These primers include two nucleotide modifications from the original to amplify specifically the Malacostraca family. All primers were synthesized with the following
overhang on the 5′ ends: Forward (5′–3′) TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGACGATAAGACCCT and Reverse (5′–3′) GTCTCGTGGGCTCGGAGATGTGTATAAGA-
GACAGCGCTGTTATCCCTAAAGTAACT.

with HF Buffer (Thermo Fisher Scientific Inc., Massachusetts,
USA), 1 µl of DNA (20 ng/µl), and 9.5 µl H2O.

Since decapods, krill and fishes had been previously detected
in the digestive tract of O. vulgaris paralarvae (Passarella and
Hopkins, 1991; Vecchione, 1991; Roura et al., 2012), we also
employed two pairs of specific primers to amplify the 16S
mitochondrial gene of malacostracan crustaceans (mt-16Sa,
Table 1) and chordates (mt-16Sb; Table 1). Cycling conditions
for both 16S pairs of primers were: initial denaturation at 94◦C
15 min, 33 cycles of: denaturation at 94◦C for 20 s, annealing at
48.7◦C for 90 s, extension at 72◦C for 45 s, and a final elongation
step at 72◦C for 2 min. PCR amplification was performed in
a total volume of 25 µl:2 µl (10 µM) of each forward and
reverse primers, 12.5 µl of Promega GoTaq R© Green Master
Mix (Promega Corporation, Wisconsin, USA), 1 µl of DNA
(20 ng/µl) and 7.5 µl H2O.

All primers were synthesized following New Zealand
Genomics Ltd. (NZGL) recommendations, with an overhang
on the 5′ ends to permit the ligation with Illumina multiplexing
indices and sequencing adapters (Table 1). The optimum
annealing temperature with the overhangs was determined with
a gradient PCR. For each primer, 2 µl of PCR product were
checked on 1.5% agarose gels. Those that presented a clear band

of expected size were cleaned up with Agencourt AMPure beads
following the manufacturer’s protocol (Beckman Coulter Life
Science Inc., México). Afterwards, PCR products were quantified
using a QubitTM 3.0 fluorometer (Thermo Fisher Scientific
Inc., Massachusetts, USA). Purified PCR products of the same
individual with concentration higher than 1.0µg/ml were pooled
together. Library preparation with 96 Nextera Index Primers,
quantification, normalization, and pooling were performed by
New Zealand Genomics Ltd. (NZGL) in their laboratories. The
library was then sequenced with MiSeq Reagent Kit V3 in MiSeq
sequencer (Illumina Inc., USA).

Bioinformatic Analysis
MiSeq reporter was used to separate and remove the adapters
for the 96 samples. The software Fastq-Multx (Aronesty, 2011)
was used to demultiplex amplicons according to the primer
sequences. Due to the wildcard characters in the primer
sequences, up to 7 base pair mismatches were permitted. Software
SolexaQA++ 3.1.4 was used to ensure the reads were still paired
(Cox et al., 2010). The paired end reads (read 1 and read 2)
were merged using VSEARCH 1.9.5 (Rognes et al., 2016). Paired
reads that did not meet the following quality filtering were
discarded (Edgar and Flyvbjerg, 2015): (i) reads with quality
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score over 3, (ii) reads longer than 140 bp, (iii) reads with less
than one expected error in the primer sequence or barcodes.
Unique sequences were clustered using a 97% identity threshold
and remaining singleton Molecular Taxonomic Units (MOTUs)
were discarded. Chimeric sequences were then removed using
UCHIME (Edgar et al., 2011). Using the final list of representative
sequences, each MOTU was searched against the GenBank
database using BLAST 3.2.31 (Camacho et al., 2009).

MOTUs with BLAST query coverage under 60% or BLAST
identities lower than 74% were also deleted from the database.
Potential contamination and predator MOTUs (i.e., A. media
and O. vulgaris) were removed from the database. Potential
prey MOTUs were assigned using the following criteria to
taxonomical categories: MOTUs with identity higher than
97% were determined at species level, MOTUs between 93 and
97% were assigned to genus, and MOTUs with identity below
93% were assigned to family.

Statistical Analysis
For each predator (A. media and O. vulgaris), we analyzed
separately the MOTUs identified by different pairs of primers.
Then, we calculated the proportion of reads for each MOTU in
relation to the total number of reads (PR). We also calculated
the frequency of occurrence for each MOTU (FM: percentage
of number of samples tested positive for a given MOTU in
relation to the total number of samples) and the frequency of the
occurrence of each family (FF: percentage of number of samples
tested positive for a given prey family in relation to the total
number of samples).

Frequency of occurrence was calculated for higher taxonomic
levels by combining information for all MOTUs falling within
the relevant taxon (Table 2). Moreover, for those taxa that were
detected with at least two pair of primers and to species level,
we calculated the overall frequency of occurrence (percentage of
samples which tested positive for a given taxon in relation to the
total number of samples, Table 2).

Redundancy Analysis (RDA) was used to detect patterns in
the diet of O. vulgaris and A. media and determine which
explanatory variables influenced those patterns. We included
the occurrences of each family (FF) detected in the analysis
as response variables, considering the presence-absence of each
family in each paralarva. All octopus paralarvae presented three
suckers per arm and were therefore probably less than 10 days
old (Villanueva, 1995; Garrido et al., 2016b). All squid paralarvae
were less than 41 days old based on statolith ring measurements
(Olmos-Pérez et al., unpublished data). However, since we did
not have complete age data, size-at-age is very dependent on
environmental (pre- and post-hatching) temperature, and food
ingestion is likely more dependent on size that on age, we
categorized DML into three different classes to facilitate detection
of ontogenetic changes during paralarvae growing. Thus, O.
vulgaris paralarvae were categorized as small (1.20–1.74 µm; n=
21), medium (1.75–1.98 µm; n = 21), or large (1.99–2.28 µm; n
= 22), and A. media were categorized as small (1.42–1.99 µm,
n = 9), medium (2.00–2.99 µm; n = 15), or large (3.00–6.02
µm; n = 8). Paralarval size class (i.e., small, medium, large),
transects (i.e., transects T2, T3, T4, T5), seasons (i.e., summer,

early autumn), and depth (z1, z2, z3, z4, and z5) were included
as nominal explanatory variables. We used the correlation triplot
(α= 0, species conditional triplot), and the correlation matrix for
the response variables. A significance test was applied with 4,999
permutations.

The effects of the season, transects, depth, andDML on dietary
diversity and the presence of particular prey families in the diet
were analyzed with generalized additive modeling (GAM) using a
Poisson distribution for diversity and a binomial distribution for
the other response variables and logit link function (link=logit),
with season and transect as fixed factors and DML and depth
effects fitted as smoothers (setting the bases dimension using k=
4 to avoid overfitting). Only themost frequently predated families
(i.e., those detected in at least 10% of the predators, FF > 10)
were used in this analysis. Models were fitted using backwards
selection. The goodness-of-fit of the models was assessed with
the Akaike Information Criterion (AIC). When the difference in
AIC between two models (i.e., with and without one explanatory
variable) was less than 2, an F-test was employed to select the
best model (in case of a significant F-value the more complex
model was preferred). All statistical analyses were performed
with Brodgar 2.7.4. (Highland Statistics Ltd., UK).

Finally, “discovery curves” were plotted to determinate if the
number of samples was sufficient to determine the importance of
the most frequently detected prey species, for each combination
of predator species (O. vulgaris and A. media), and primers (COI
and 16sa). For each prey species, predator and primers, sets of
0, 1, 2... n samples were drawn at random from the available
n samples and the proportional occurrence of the prey type
was calculated for each sample size. Ten replicates were used to
generate means and confidence limits, which were then plotted
against sample size.

RESULTS

Bioinformatic Analysis
Of 8,274,658 raw reads, 5,734,163 were successfully
demultiplexed and contained both read 1 and read 2. Then,
5,119,926 paired end reads were successfully merged, and
4,752,768 reads remained after quality filtering. A total of
4,124,464 reads was clustered into 1,155 MOTUs using a 97%
threshold. Of the total reads, 3,189,247 corresponded to COI,
744,474 reads to the primers set 16Sa and 190,743 reads to the
primer set 16Sb. Of these, 405 MOTUs (31,604 reads) did not
match any GenBank sequence and 1,155 MOTUs, 750 (4,092,860
reads) had a match on GenBank database.

After meeting the thresholds of query coverage and identity,
465 MOTUs (131,843 sequences) were removed and 285 MOTUs
(3,961,017 reads) were classified as: contamination (48 MOTUs,
41,422 reads), O. vulgaris (60 MOTUs, 2,150,967 reads), and A.
media (55 MOTUs, 1,534,538 reads) and were removed prior
to the analysis. In total, 122 MOTUs (234,090 reads) were then
considered as potential prey.

Finally, 66 prey MOTUs (112,015 reads) were detected with
the pair of primers COI, 53 prey MOTUs (122,029 reads) with
pair of primers 16Sa and 3 prey MOTUs (46 reads) with pair of
primers 16Sb (Supplementary Material 1). The total number of
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TABLE 2 | Taxonomic groups identified with the different primers (COI, 16Sa or16Sb) in both predators.

Phyllum Order Family Genus Species FT O. vulgaris FT A. media

COI 16Sa 16Sb O COI 16Sa 16Sb O

Arthropoda Amphipoda Hyperiidae 9.38

Calanoida Calanidae Calanoides C. carinatus 1.56

Candaciidae Candacia C. armata 6.25

Clausocalanidae Clausocalanus C. jobei 4.69 6.25

Ctenocalanus C. vanus 6.25

Pseudocalanus P. elongatus 9.38

6.25

Euchaetidae Paraeuchaeta P. hebes 3.13

Paracalanidae Paracalanus P. parvus 3.13

39.63 31.25

Decapoda Alpheidae 1.56

Carcinidae Carcinus C. maenas 4.69 32.81 32.81 9.38

4.69

7.81

Crangonidae Crangon C. crangon 3.13

Diogenidae Diogenes D. pugilator 4.69

4.69

Galatheidae Galathea G. intermedia 3.13

G. squamifera 1.56

3.13

Goneplacidae Goneplax G. rhomboides 23.44 12.50 26.56 9.38 6.25 12.50

7.81

9.38

Inachidae Macropodia M. parva 4.69

Inachus I. dorsettensis 3.13

7.81

1.56 1.56

Paguridae Anapagurus A. hyndmanni 3.13

Pagurus P. bernhardus 7.81 6.25 10.93 3.13

P. prideaux 3.13 1.56 4.68 6.25

1.56 3.13

Pilumnidae Pilumnus P. hirtellus 46.88 67.19 76.56 6.25 18.75 25.00

15.63

12.50 6.25

4.69

Pirimelidae Pirimela P. denticulata 7.81

3.13

Polybiidae Liocarcinus L. navigator 3.13 6.25 6.25 3.13

6.25 4.69

Necora N. puber 1.56 10.94 10.94 3.13 3.13 6.25

1.56

4.69

Porcellanidae Pisidia P. longicornis 6.25 9.38 10.93 6.25 21.88 25.00

Portunidae 14.06 3.13

Processidae Processa P. nouveli holthuisi 1.56

P. edulis crassipes 3.13

Sesarmidae 1.56

Thiidae Thia T. scutellata 1.56

(Continued)
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TABLE 2 | Continued

Phyllum Order Family Genus Species FT O. vulgaris FT A. media

COI 16Sa 16Sb O COI 16Sa 16Sb O

Upogebiidae Upogebia U. deltaura 4.69

7.81 6.25

Varunidae 1.56 3.13

Xanthidae Xantho X. pilipes 1.56

Diplostraca Podonidae Podon P. intermedius 9.38 6.25

Sididae Penilia P. avirostris 12.50

7.19

Euphausiacea Euphausiidae Nyctiphanes N. couchii 4.69 18.75

1.56 12.50

Poecilostomatoida Oncaeidae Oncaea 4.69 3.13

6.25

Chaetognatha Phragmophora Eukrohniidae 3.13 9.38

Chordata Perciformes Gobiidae Crystallogobius C. linearis 1.56

Salpida Salpidae Thalia T. democratica 3.13

Echinodermata Euryalida Euryalidae 14.06 12.50

Ophiurida Amphiuridae Amphiura A. abyssorum 7.81 3.13

Ophiactidae 4.69

Ophiuridae Ophiura O. albida 3.13

7.81 3.13

3.13

Cnidaria Leptothecata Campanulariidae Obelia O. geniculata 1.56 46.88 12.50

1.56

Siphonophorae Diphyidae Muggiaea M. atlantica 1.56 15.63

Muggiaea

Prayidae Rosacea R. flaccida 3.13 9.38

Mollusca Mytilida Mytilidae Mytilus M. galloprovincialis 3.13

Architaenioglossa Viviparidae 4.69

Veneroida Lasaeidae 6.25

Montacutidae Tellimya T. ferruginosa 1.56

Nermertina Heteronemertea Lineidae Cerebratulus 3.13

The frequency of occurrence of each Taxon (FT), detected by the primers individually (COI, 16Sa, 16Sb) and the combined information for taxa detected by at least two pair of primers
(O, Overall frequency of occurrence).

sequences in each category detected in both predators by different
pair of primers was, the average and the range are presented in
Supplementary Material 2.

Prey Identification
Genetic analyses with primer COI revealed the presence of prey
in the digestive glands of 56 O. vulgaris (56/64 = 87.5%) and 25
A. media (25/32 = 78.1%). Primers 16Sa revealed the presence
of prey in the digestive tracts of 51 O. vulgaris (79.7%) and 10
A. media paralarvae (31.3%). Finally, 16Sb revealed the presence
of prey in 2 O. vulgaris (3.12%) and 7 A. media paralarvae
(21.87%). Primers COI amplified a wide spectrum of species
detected in gut content of cephalopods paralarvae, belonging
to a minimum of 7 phyla, 15 orders, and 32 families. Within
these higher taxa, we were able to distinguish 28 genera and 27
species (Table 2). Primers 16Sa amplified mainly decapods, but
also species belonging to other taxonomic groups. In total, they

amplified taxa belonging to a minimum of 3 phyla, 6 orders,
and 22 families. Within these, we were able to distinguish 21
genera and 24 species (Table 2). Primers 16Sb amplified in total
2 phyla, 3 orders, 3 families. Within these, we were able to
distinguish 3 genera and 3 species (Table 2). In total, 21 families
were exclusively identified by COI primers, 9 by 16Sa primers,
and 2 by 16Sb. Thirteen families were detected with both primers
COI and 16Sa (Table 2).

In total, considering all pair of primers together, prey were
detected in 62 (96.9%) O. vulgaris and in 26 (81.3%) A. media
paralarvae. The number of different prey taxa identified in
individual O. vulgaris paralarvae range between 0 and 9 (mean
± standard error, 2.1 ± 0.267) with COI and between 0 and 7
(2.22 ± 0.232) with 16Sa. In individual A. media the number
of prey taxa identified with COI primers were between 0
and 8 (2.09 ± 0.334) and between 0 and 11 (0.94 ± 0.378)
with 16Sa.
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O. vulgaris
The most abundant prey reads detected with primers COI
(Figure 2A) matched with the crabs Goneplax rhomboides (order
Decapoda), an unknown species of the family Portunidae (order
Decapoda) and Pilumnus hirtellus (order Decapoda), as well as an
unknown ophiuroid of the family Euryalidae (order Euryalida).
With 16Sa primers (Figure 2B) the most abundant prey reads
matched with the crabs Carcinus maenas (family Carcinidae) and
P. hirtellus (family Pilumnidae) (Supplementary Material 1).

COI primers identified a total of 54 unique MOTUs belonging
to 6 phyla, 14 orders, and 31 families. Within these, we were
able to distinguish 28 genus and 20 species while 16Sa primers

identified a total of 47MOTUs belonging to 3 phyla, 5 orders, and
20 families. Within these, we were able to distinguish 18 genus
and 19 species (Table 2).

Using COI primers, the most frequently detected MOTUs
(FM) inO. vulgariswere the crab P. hirtellus (family Pilumnidae),
the copepod Paracalanus sp. (family Paracalanidae) and the
crab G. rhomboides (family Goneplacidae). With 16Sa, the most
frequently detected MOTUs (FM) were the decapods C. maenas
and P. hirtellus. The remainingMOTUswere detected in less than
10 octopus paralarvae (Supplementary Material 1).

Pilumnidae was the most frequently detected family
in O. vulgaris with primers COI and 16Sa (FF =

FIGURE 2 | Proportion of Molecular Operational Taxonomic Units (MOTU) prey reads (PR) detected with the primer COI (A) and the primer 16Sa (B) in O.
vulgaris and A. media. MOTUs were clustered in orders (A) or families (B).
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47 and 67%, respectively) (Figure 3). With primers
COI, other families detected in more than 10% of O.
vulgaris paralarvae were Paracalanidae, Goneplacidae,
Paguridae, Portunidae, Euryalidae, Sididae, and Polybiidae

(Figure 3A). Primers 16Sa detected the families
Carcinidae, Goneplacidae, Inachidae, Paguridae, and
Polybiidae in more than the 10% of octopus paralarvae
(Figure 3B).

FIGURE 3 | Frequency of the occurrence of the families (FF) detected in O. vulgaris with primers COI (A) and primers 16Sa (B) with primer COI. Colors

represent different orders. The corresponding phylum is indicated on the left. Vertical dashed line indicates the families detected in more than 10% of paralarvae.
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Analysis with the primer 16Sb revealed that Rosacea flaccida
(Order Siphonophorae) was present in twoO. vulgaris paralarvae
(four reads).

A. media
The most abundant prey reads with COI primers (Figure 2A)
matched with the copepod Paracalanus sp. (order Calanoida),
followed by the hydrozoan Obelia geniculata (order
Leptothecata), and an unknown ophiuroid of the family
Euryalidae (class Ophiuroidea). With 16Sa (Figure 2B), the most
abundant prey reads matched with the crabs C. maenas (family
Carcinidae), Pisidia longicornis (family Porcellanidae), and P.
hirtellus (family Pilumnidae) (Supplementary Material 1).

In A. media, COI primers identified a total of 29 unique
MOTUs, belonging to 5 phyla, 10 orders, and 17 families. Within

these, we were able to distinguish 16 genera and 11 species, while
16Sa primers identified a total of 18 unique MOTUs, belonging
to 2 phyla, 5 orders, and 13 families. Within these, we were
able to distinguish 12 genera and 14 species (Supplementary
Material 1).

The MOTUs most frequently detected (FM) in A. media were
the hydroidO. geniculata (family Campanulariidae), the copepod
Paracalanus sp. (family Paracalanidae), and the siphonophore
Muggiaea sp. (family Diphyidae). The remaining 31 MOTUs
were detected in less than 15% of squids (Table 2). 16Sa primers
revealed that the most frequent detected MOTUs were P.
longicornis and P. hirtellus. Seventeen MOTUs were detected in
<10% of the squids (Supplementary Material 1).

The most frequently detected families detected with
COI primers were: Campanulariidae (order Leptothecata),

FIGURE 4 | Frequency of the occurrence of families (FF) detected in A. media with primers COI (A) and with primer 16Sa (B). Colors represent different

orders. The corresponding phylum is indicated on the left. Vertical dashed line indicates the families detected in more than 10% of paralarvae.
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Paracalanidae, Clausocalanidae (order Calanoida), Diphyidae,
Euphausiidae, and Euryalidae (Figure 4A). The most frequently
detected families detected with 16Sa primers were Pilumnidae
and Carcinidae (Figure 4B).

In A. media, 16Sb revealed the presence of the hydrozoan O.
geniculata (FM = 12.5%, 32 reads), the siphonophore R. flaccida
(FM= 9.3%, 7 reads), and the salp Thalia democratica (FM= 3%,
three reads) (Supplementary Material 1).

Diet Selection
RDA analysis showed that season and transect, but not depth or
individual size, significantly affected the prey families detected
in the diet of O. vulgaris (Table 3). The sum of all canonical
eigenvalues was 0.192 and the first two axes accounted for 51.53%
of the fitted variation (i.e., the 9.91% of the total variation in the
family data; Figure 5). In A. media, transect, but not season, size,
or depth, significantly affected the families detected in their diet
(Table 3). The sum of all canonical eigenvalues was 0.309, and the
first two axes accounted for 48.73% of the fitted variation (i.e., the
15.05% of the variation in the family data; Figure 5).

The GAM analysis for the most frequently occurring families
(detected in at least 10% of paralarvae) in O. vulgaris revealed
that the copepod family Paracalanidae (FF = 39%) was more
frequently predated in autumn than in summer (p < 0.001;
Table 4). Predation on the crab family Pilumnidae (FF = 47%)
differed across transects (p = 0.028; Table 4), being more

TABLE 3 | Summary of the RDA analysis.

Predator Explanatory variable Eigenvalue F-statistic p-value

O. vulgaris Summer 21.17 2.632 <0.001

T2 14.39 1.824 0.002

T3 9.76 1.610 0.032

T4 7.35 1.009 0.447

Z1 10.64 1.020 0.428

Z2 13.43 1.437 0.060

Z3 8.87 0.744 0.617

Small 9.69 1.101 0.323

Medium 9.28 1.289 0.109

A. media Summer 11.51 1.556 0.080

T2 18.57 1.826 0.017

T3 13.27 0.379 0.970

T4 10.80 0.900 0.548

Z1 1.78 0.569 0.724

Z2 4.73 0.836 0.529

Z3 8.55 0.396 0.977

Z4 14.41 0.522 0.079

Small 8.39 1.079 0.368

Medium 8.39 0.893 0.593

Eigenvalues for single explanatory variables are expressed as a % of the sum of
eigenvalues for the full set of explanatory variables (0.192 in O. vulgaris and 0.309 in A.
media). All explanatory variables were included in the analysis: Season (Summer- Autumn);
Transect (T2-T3-T4-T5); Depth (z1: 0-5 m; z2:5-10 m; z3: 10-20 m; z4: 20-35 m; z5:35-55
m); Size (small, medium, large). Significant values are in bold.

frequent in T5 and T4 than the rest of transects (Figure 6). The
ophiuroid family Euryalidae (FF = 14%) was more frequently
predated in autumn than in summer (p= 0.010,Table 4) and was
more frequent in smaller individuals (p = 0.020; Figure 7). The
cladoceran family Sididae (FF= 13%) was more frequently found
in small individuals (p = 0.030, Figure 7) and only detected
in autumn (Table 4). The decapod families Goneplacidae (FF
= 23%), Portunidae (FF = 14%), Paguridae (FF = 14%), and
Polybiidae (FF = 11%) did not differ between seasons, among
sizes or transects (p > 0.05 in all cases). The number of families
in the diet of O. vulgaris differed between seasons (p < 0.001;
Table 3) and among transects, (p= 0.023; Table 3). Thus, a wider
range of families was predated in autumn than in summer, and in
T3 than in T2 or T5 (Table 3). DML or depth did not affect the
number of prey families detected in O. vulgaris (p > 0.05 in both
cases).

The GAM analysis of themost frequent families (detected in at
least 10% of paralarvae) inA. media revealed that the occurrences
of the families Campanulariidae (FF = 47%), Paracalanidae (FF
= 31%), Clausocalanidae (FF = 19%), Diphyidae (FF = 16%),
and Euryalidae, (FF = 13%) in the diet were not affected by
size, depth, transect, or season (p > 0.005 in all cases). However,
family Euphausiidae (FF = 13%) was only detected in autumn.
The number of families in the diet did not differ significantly
with paralarval size, depth, transect, or season (p > 0.05 in all
variables).

The discovery curves for O. vulgaris (Figure 8) showed
stabilization of the proportional occurrence estimates, when at
least 45 of 64 paralarvae were sampled. The discovery curves for
A. media (Figure 9), did not show any stabilization for the whole
number of samples analyzed (n= 32).

DISCUSSION

Overall, 107 MOTUs were successfully identified in O. vulgaris,
which corresponded to 40 different families, 31 genera, and
32 species, while in A. media, 58 MOTUs were identified
corresponding to 25 different families, 23 genera, and 21 species
(Supplementary Material 1). The combination of the different
primers targeting small DNA fragments, and comprehensive
genetic databases, permitted us to identify up to 77 types of
prey (Table 2). For the first time, a molecular approach was
successfully applied to identify prey of wild A. media paralarvae,
thereby increasing the range of known prey of wild O. vulgaris
paralarvae during their first days of planktonic stage. Together,
the results increased the knowledge of the prey predated by
cephalopod paralarvae in their natural environment, suggesting
more species to feed paralarvae in captivity conditions.

The amplification of the COI barcoding mitochondrial
region with universal primers detected a broader taxonomic
range of prey than the 16S primers (Table 2), and allowed the
identification of 21 families that were not amplified with 16S
primers. Additionally, 16Sa primers detected prey in digestive
glands where no prey was detected with COI primers. 16Sa
primers also amplified nine additional families not detected
with COI primers. Of those, four families belonged to the class
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FIGURE 5 | (A) RDA triplot for the O. vulgaris families identified with COI gene. The correlation matrix was used. The first axis explains 29.57% and the second axis

explains 21.96% of the total sum of all canonical eigenvalues (0.192). All the explanatory variables were used. (B) RDA triplot for the A. media families identified with

COI gene. The correlation matrix was used. The first axis explains 27.26% and the second axis explains 21.47% of the total sum of all canonical eigenvalues (0.39). All

the explanatory variables were used.
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FIGURE 6 | Families detected in O. vulgaris paralarvae (A) and A. media paralarvae (B) in different transects (2, 3 4, 5) and different seasons (summer, autumn).

The vertical axis represents the number of paralarvae that present a given family.

Malacostraca which was their target (Deagle et al., 2005), but 16Sa
primers also amplified cephalopod DNA and five prey families
belonging to ophiuroids, copepods, cladocerans, and mollusks
(Amphiuridae, Ophiuridae, Candaciidae, Podonidae, and
Mytilidae, respectively). Lastly, primers 16Sb were specifically
designed to amplify teleost fishes (Deagle et al., 2009) but they
amplified DNA from the predator species (i.e., O. vulgaris or
A. media), two cnidarian species and urochordates (i.e., salps).
When the same taxa were detected by two primer pairs, they
were usually amplified unequally in the same predator (i.e.,
different occurrence for each prey in the same paralarvae and
different number of reads). These results could be explained due
to low prey DNA quantity and differential affinity of primers to
prey DNA, supporting the usefulness of including more specific
primers to increase taxonomic resolution of prey ingested
(Blankenship and Yayanos, 2005; Deagle et al., 2009).

Previous studies (Piñol et al., 2014) showed that blocking
primers are not essential in molecular dietary studies to detect
small quantities of prey DNA. In our study, despite the large
quantity of predator sequences (90% of sequences), the 7.5% of
reads obtained from potential prey (Supplementary Material 2),

provided prey information never uncovered by other methods
employed to the date (i.e., visual, cloning, immunoassay) and
highly increased our knowledge about the diet of paralarvae
with many new prey taxa recorded. The addition of blocking
primers, could have diminished predator sequences, increasing
the number of prey reads (Vestheim and Jarman, 2008; Deagle
et al., 2009; Leray et al., 2013a) and might have revealed
additional prey species. However, additional studies comparing
prey identification in diet analysis with both methodologies
would be necessary to assess the utility of blocking primers to
analyze the diet of cephalopod paralarvae. Owed to the high
sensitivity of NGS methodologies, it is important to underline
the possibility of detecting DNA of other organisms that were
consumed by the prey ingested by the paralarvae, i.e., secondary
predation (Sheppard et al., 2005). In addition, it may happen that
some of the prey detected could be captured by the paralarvae
inside of the net. If so, it should be expected to find prey remains
in the proximal part of the digestive tract (esophagus, stomach,
or crop). However, since only the digestive gland was dissected,
we can assume that the prey detected in this study was ingested
by the paralarvae before their capture.
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FIGURE 7 | Smooth curves for partial effects obtained by the

Generalized Additive Modeling (GAM) of the occurrence of the families

Pilumnidae (A), Euryalidae (B), Sididae (C,D), and Paracalanidae (E) as prey

of O. vulgaris paralarvae. Explanatory variables used were dorsal mantle length

(DML) and depth (Z1, Z2, Z3, Z4). Dotted lines are 95% confidence bands.

The vertical axis represents the effect on the response variable.

Dietary Differences
Octopus vulgaris paralarvae mainly preyed on decapod species,
that generally comprise<5% of the total zooplankton abundance
in the Ría de Vigo (Roura et al., 2013; Buttay et al., 2015). Among
decapods, the speciesmost frequently detected inO. vulgariswere
the crabs C. maenas, P. hirtellus, and G. rhomboides (families
Carcinidae, Pilumnidae, and Goneplacidae, respectively), that are
also the most abundant decapod species in the Iberian Peninsula
coast (Paula, 1987; Fusté and Gili, 1991; Queiroga, 1996). Family
Pilumnidae was less frequent in more oceanic transects (T5),
probably because they migrate from estuarine zones to offshore
waters during their larval development and there is higher
concentration in more inshore waters. Moreover, species of this
family were more frequently detected in paralarvae captured at
depths between 5 and 10 m, probably because they migrate to the
upper water layers at night (Dos Santos et al., 2008).

The second most frequently detected group in O. vulgaris gut
contents were the Calanoid copepods, a group not detected in

previous studies (Roura et al., 2012). In particular, Paracalanus
sp. was the main copepod identified in O. vulgaris gut.
In Galician zooplankton communities, Calanoid copepods in
general represent more than 60% of total zooplankton abundance
(Blanco-Bercial et al., 2006; Roura et al., 2013; Buttay et al., 2015).
Zooplankton community studies in this area have also shown that
high abundances of Paracalanus species are linked to low salinity
values (Blanco-Bercial et al., 2006). In our study, this prey was
more frequently detected in O vulgaris paralarvae captured in
autumn. The upwelling conditions during this season (i.e., cold
and low salinity waters), could have promoted high abundances
of this species increasing their availability in the environment and
thus facilitating the predation.

Brittle stars (family Euryalidae) and cladocerans (family
Sididae) were both frequently detected in small O. vulgaris
paralarvae, perhaps because they are an easier target than
fast moving copepods and decapods. The cladoceran identified
with COI primers was Penilia avirostris. This species has been
highlighted as an indicator of warm waters, and high abundances
have occasionally been described in the Ría de Vigo associated
with an increase in water temperature (Figueiras et al., 2011).
The sea surface warming trend observed in Galician coastal
waters during recent years (Gómez-Gesteira et al., 2008) could
be favoring the presence of this cladoceran species. Another
cladoceran that is very abundant in the Ría de Vigo was
detected by primers 16Sa, namely Podon intermedius (Roura
et al., 2013; Buttay et al., 2015). It was identified also in small
and medium individuals. The detection of abundant cladoceran
species in octopus guts could suggest opportunistic predation on
cladocerans, specifically by smaller paralarvae.

Only one fish species was identified with COI primers in a
singleO. vulgaris paralarvae, and no fish DNAwas amplified with
16Sb primers that were specifically designed to amplify fish DNA
(Deagle et al., 2009). This result suggests low predation on fish,
perhaps because the high mobility of fish larvae makes it difficult
for the paralarvae to capture them.

Regarding squids, in A. media different prey species and
different frequencies of occurrence were detected compared to
O. vulgaris: Cnidarians were detected in A. media paralarvae
of all sizes. Cnidarians are not very abundant in zooplankton
community in Galicia (Buttay et al., 2015). Thus, these results
could suggest selective predation on cnidarians, as also observed
in turtles and sunfish (Dodge et al., 2011; Sousa et al., 2016).
In contrast, cnidarians were only detected in three O. vulgaris.
Their rare presence might be explained as a secondary predation
effect (Sheppard et al., 2005) because high resolution of NGS, can
detect small DNA amount present in the digestive tract of a prey
captured by the paralarvae. It is also possible that hydroids are
predated by O. vulgaris because they are easy to capture for slow
recently hatched paralarvae (<10 days old, Garrido et al., 2016b).
Moreover, squid paralarvae ingested up to ten copepod species,
while only four were detected in octopus. This difference between
A. media and O. vulgaris might be related with their hunting
skills, which are developed during initial life stages (Villanueva
et al., 1997). Alloteuthis media also preyed on decapods, and
species of this group were mainly detected with the primer pair
16Sa. Thus, this could imply that the amount of DNA present
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FIGURE 8 | Summary from 10 randomized sample sets of species identified in O. vulgaris with primers COI (A), primers 16Sa (B), and both pair of primers

(C). Average values are presented as continues lines and Confidence Intervals (C.I.) as dashed lines.

was low and it was only possible to amplify decapod DNA with
the specific pair of primers.

Other prey detected in both cephalopod species such as
amphipods, cladocerans, euphausiids, and fishes, had been

previously detected in the paralarval digestive system, but with
a lower taxonomical resolution (Passarella and Hopkins, 1991;
Vecchione, 1991; Venter et al., 1999; Vidal and Haimovici, 1999;
Roura et al., 2012). Additionally, the gut contents of paralarvae
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FIGURE 9 | Summary from 10 randomized sample sets of species identified in A. media with primers COI (A), primers 16Sa (B), and both pair of primers

(C). Average values are presented as continues lines and Confidence Intervals (C.I.) as dashed lines.
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of both species included molluscs, echinoderms, chaetognaths,
and a nemertean that had never been previously identified
in cephalopod paralarvae. Finally, DNA of chaetognaths and
nemerteans was detected in a small number of paralarvae
gut contents, and thus could reflect opportunist predation or
alternatively, their DNA might be present in an organism
ingested by the paralarvae, as an effect of secondary predation
as explained above.

Diet diversity for O. vulgaris was influenced by the season
and distance to shore. Numerous studies have shown that
zooplankton communities in Galicia change according to
oceanographic and meteorological conditions (Bode et al.,
2009; Roura et al., 2013; Buttay et al., 2015). Thus, diet
variability observed in O. vulgaris paralarvae might be related
to zooplankton changes in prey availability in the zooplankton
community. In contrast, no relationship could be established
between the diet of A. media and the environmental explanatory
variables or individual size. This may be related to small number
of samples analyzed: discovery curves in A. media, showed very
wide C.I. and no stabilization of the proportional occurrence
estimates for the whole number of samples analyzed (n= 32). In
contrast, O. vulgaris discovery curves, showed narrower C.I. and
a stabilization of the proportional occurrence estimates, when at
least 45 paralarvae are sampled. These results suggest that the
number of A. media paralarvae analyzed was insufficient for a
comprehensive dietary analysis of this species. In contrast, results
suggest that the number of paralarvae of O. vulgaris analyzed in
this study could be enough for this dietary analysis.

Our results showed that O. vulgaris prey on a wide variety
of decapod species, but also frequently prey on other taxonomic
groups, includingmollusks, ophiuroids, amphipods, cladocerans,
copepods, chaetognaths, or cnidarians. However, the low number
of samples analyzed in previous research could have prevented
the identification of rarely detected prey, that would likely only
be identified when increasing the number of paralarvae analyzed.
Moreover, the employment of several primers targeting different
genes, could have favored the detection of additional species with
broader taxonomic range that previous studies.

Overall, our results showed the usefulness of the NGS
approach with several primers targeting different genes to dietary
analysis of wild cephalopod paralarvae. Results have shown
that they feed on a wide diversity of prey, mainly decapods,
copepods, and cladocerans, but also other taxa that have not
been previously identified in wild cephalopod paralarvae such
as mollusks, echinoderms, chaetognaths, salps, cnidarians, and a
nemertean. This study provides essential data to elaborate more
suitable diets for captive cephalopod paralarvae, with the aim of
increasing their survival for economically sustainable farming.
Further studies are needed, including use of a wider variety of

prey, mainly copepods from the genus Paracalanus, Cladocerans,
and different decapod species, to test the effect on the digestive
gland performance, growth and survival of recently hatched
paralarvae.
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