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Abstract 
 
Twitter is a popular Social Network Service. It is a web application with dual roles of online social 

network and microblogging. Users use Twitter to find new friends, update their activities  or 

communicate with each other by posting tweets. Its popularity attracts many spammers wanting to 

spread advertising or malware. Many systems are proposed to detect spammers or spam tweets 

using a different subset of features, or by extracting the features based on different numbers of 

recent tweets. However, we do not know which proposed system is the best, because they use 

different techniques, such as different subsets of features, number of recent tweets, classifiers and 

evaluation metrics. Over time, spammers will change their key features to disguise themselves as 

a normal user, and we do not know whether the current systems are able to cope well with this 

phenomenon, which is called spam drift.  

 

In this research we have created a tool called WEST, which stands for "Workbench Evaluation 

Spammer detection system in Twitter." This tool allows users to investigate their model's 

performance against the spam drift problem and save much time for further users to do their 

research in this field; for example, extracting the features, which is a time-consuming process. 

Also, we did comprehensive investigative studies on the proposed 172 features, which include 

content-based and user-based features from the existing systems to find the optimised subset of 

features that is effective, efficient and resilient at detecting spammers. 

 

Based on the investigation of the 172 existing features, we found a model that we called ASDF, 

which stands for Anti Spam-Drift Features, that could detect spammers at 91% True Positive rate 

and performed the best at handling the spam drift problem compared to the existing spammer 

detection systems.  

 

Keywords: Spammer detection, spam drift, Twitter, optimisation subset of features, optimisation 

recent tweets  
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         CHAPTER 1 

INTRODUCTION 
 

Twitter is a popular Social Network Service that allows users to post messages, called tweets, of 

up to 140 characters. It allows the users to share news, opinions, trending topics, photos, or general 

content [1]. Spammers exploit Twitter functions to spread malicious content. Twitter reported that 

in 2014 around 13.5 million accounts were either spam or fake [2], and according to [3] a study 

shows 90% of users click on a new spam link before this link is blocked by the blacklist. There are 

many proposed systems for detecting spammers in Twitter. However, spammers continue to evade 

existing techniques by changing their behaviour or changing their key features to disguise as a 

legitimate user [4], and this phenomenon is called spam drift. Furthermore, it is hard to find the 

best systems to identify spammers because they use different evaluation setups. Thus, it is our goal 

to investigate what are the best features to identify spammers as none of the researchers are doing 

any investigation about it. In order to achieve this goal, we have created a tool called WEST 

(Workbench Evaluation Spammer detection system in Twitter). This tool contains current 

techniques to create a spammer detection system in Twitter. Moreover, this is a novel tool for 

researchers to evaluate their proposed system to determine whether their system performance is 

good against the spam drift problem or not. 

1.1 Background of the study 
 

Twitter is a web application with dual roles of online social networking and microblogging [5]. 

Twitter users use the platform to find new friends, update their activities [6] or communicate with 

each other by posting tweets [5]. When a user posts a tweet, it immediately appears to their 

followers or followings and allows them to spread the received information [7]. 

 

Twitter has become one of the most popular Social Network Services [8]. Its popularity attracts 

many spammers wanting to spread advertising or malware. About 83% of the users of social 

networks have received at least one unwanted friend request or message [9], and 45% of users on 

social networks click on links posted by friends in their friend list accounts, even though they do 

not know those people in real life [6]. Users identify spammers manually based on their experience, 

which can lead to problems with false positives. Therefore, it is important to have a tool that can 

automatically identify spammers [6]. These goals are similar to traditional spam emails, but spam 

in Twitter is different because Twitter limits each message to only 140 characters. Therefore, 

spammers in Twitter cannot put lengthy information in each tweet [10], while emails consist of 

headers, subject and body, which alone contain more content than a tweet. 

 

A number of researchers extracted features from tweets that were gathered from Twitter API and 

applied machine learning algorithms for spammer detection. [7] used the maximum number of 

tweets, age of account, or number of followers to detect spammers by using SVM. [11] applied 

several machine learning algorithms such as SVM, NB, DT and RF to detect spammers based on 
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profile description, or number of tweets per day. However, the statistical attributes, such as number 

of words, number of characters, or number of tweets posted in the early morning vary over time, 

for example, spammers always post more tweets in the early morning, and now they have changed 

it by posting tweets at a random time of day, and because of that, the performance decreases due 

to new tweets come for identification [12]. Also, spammers will try to find a way to lure the current 

systems by disguising the key features, and then the detection method will fail soon [13]; this 

phenomenon is called "Spam Drift". 

1.2 Problem Statement 
 

After studying the existing methods, we found that many spammer detection systems utilise 

different features to detect spammers and most were expanded from #hashtag, @mention and 

URL. Also, those features were extracted from different numbers of recent tweets, such as in [14] 

where the authors counted the number of #hashtags from all the tweets for one user, [6] counted 

the number of #hashtags from 100 recent tweets, and [15] counted the number of #hashtags per 

word. All seems to perform well, but we do not know which one is the best and why, or how well 

they handle spam drift. Therefore, in this research, we present a problem statement:  

 
"What is the most effective, efficient and resilient system for detecting spammers in Twitter?" 
 

An effective and efficient spammer detection system in Twitter must be able to identify spammers 

with high overall true positive rate, recall, precision, f-measure and accuracy in the least amount 

of time possible. One factor that could influence the effectiveness of a system is the subset of 

features selected for training and building the model. Also, the performance of the current features 

is dramatically influenced by spam drift as mentioned. Statistical features used to detect spam vary 

over time as spammers continuously change strategies. They try to evade a spammer detection 

system by making those statistical attributes resemble normal tweets. Thus, a resilient spammer 

detection system must be a system that can handle spam drift. 

 

The term "efficient" relates to the time to build and classify a system, and the factors that affect 

the "efficiency" are the number of recent tweets for feature extraction and classifiers for training. 

Finally, a "resilient" system must be able to detect spammers with a high true positive rate after a 

certain period of time, even though spammers will change their behaviour or key features to 

disguise themselves as a legitimate user. Thus, in this research, we would like to find the 

optimisation subset of features and techniques to identify spammers. In the next section, we present 

three research questions that are used to find the answer to the problem statement. 

1.3 Research Questions 
 

Apart from creating the WEST tool and publishing conference papers, another objective of this 

research is to investigate the best features for identifying spammers in Twitter. While looking at 

the existing methods in this field, we found that the most important aspects for building a spammer 

detection system are the feature extraction and feature selection steps. Because the existing 

methods experimented with different datasets and there is no evaluation workbench that enables 



14 

 

us to compare each model, it is hard to objectively determine all the contributing factors for 

producing the most effective and efficient spammer detection model. Thus, we formulated our 

research questions based on this motivation. 

Question 1: What are the most effective content-based and user-based features for detecting 
spammers in Twitter? 
 

There are many content-based and user-based features that are used to build a spammer detection 

system in Twitter, but we do not know which are the best subsets of features for building a system. 

The term "effective" means the proposed model must detect spammers with high Accuracy, True 

Positive Rate, F-measure, Recall and Precision, regardless of the time required to extract and 

classify them. In order to answer this question, we will collect many different features from many 

existing systems and perform several experiments to find the optimal subset of features. We have 

reviewed 172 content-based and user-based features, from many authors, concerning how to 

extract them. In Chapter 3, we will explain how to perform the experiments to find the optimal 

subset of features and how to extract the 172 content-based and user-based features. 

 
Question 2: Which model is the most efficient at identifying spammers in Twitter? 
 

Although many researchers have proposed various systems for detecting spammers in Twitter, 

none have mentioned the time it requires to achieve this. It is important to know the time because 

in November 2016, on average, there were around 6,000 tweets every second [16], so it is essential 

for legitimate users to quickly determine if tweets are sent by a spammer. 

 

The most efficient spammer detection system should be able to detect spammers accurately in the 

least time possible. The factors that might affect the system's efficiencies are feature selection, the 

number of recent tweets and classifiers. For feature selection, we measure how long it takes to 

extract the features and how useful the features are at detecting spammers. With each classifier, 

we measure the time required to build a model and generate the results based on the feature 

selected, and how well the model performed.  

 

The number of recent tweets is the number of tweets used to extract the features, for example, [6] 

used 100 recent tweets to extract the features, and [17] used 20 recent tweets for their system. We 

hypothesize that the larger the number of recent tweets a system uses, the longer it will take to 

extract the features. To answer this question and find out the best technique that requires the least 

amount of time, we will apply some experiments to different groups of features for different 

numbers of recent tweets.   

 
Question 3: Which model is the most resilient at handling the spam drift phenomena? 

 

The performance of a spammer detection system will decrease over time because spammers always 

change the properties of the new incoming tweets to avoid being detected, i.e. those systems are 

not resilient [6, 17]. It is important for people to be able to quickly evaluate the effectiveness of 

their model at handling those tweets and make changes to their model when it is not effective 

anymore. However, currently, there is no easy way for people to do so. To be resilient, they have 
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to regularly update their training datasets and implement new features that they should use in their 

current model. Usually, those features are the ones that have been proposed by other researchers. 

 

Chapter 3 shows how we can use our novel tool, called WEST, to not only help researchers 

investigate how well their model is at handling tweets from various time periods, but also to enable 

them to leverage the findings of other researchers and try out features proposed by other 

researchers that can better handle the spam drift problem. With WEST, people can easily compare 

the performance of two or more spammer detection systems and deduce which model is the most 

resilient. Section 4.3 illustrates the results of our spam drift evaluation. 

1.4 Research Contribution 
 

This research presents a comprehensive study of the existing systems used to identify spammers, 

irrespective of the dates the tweets were created in Twitter and finding a resilient model that can 

capture spammers with the highest accuracy in the least amount of time possible. This model will 

be created based on the collection of features that have been used by the existing spammer 

detection systems. The proposed model in this research will contribute as an alternative approach 

in this field, and also expand the knowledge for further research. 

 

In addition to finding a new model to identify spammers, a workbench tool is developed which 

supports the current techniques such as 172 built-in content and user-based features, different 

number of recent tweets, and feature selection algorithms and classifiers. This tool allows the users 

to perform the experiments easily and also will contribute to the public as open-source. 

 

We published two conference papers: Evaluating Social Spammer Detection Systems [18] presents 

the most effective and efficient features to build a spammer detection system in Twitter, and A 

Framework for Evaluating Anti Spammer Systems for Twitter [19] evaluates the impact of using 

different numbers of recent tweets to obtain a faster and more accurate model. These papers 

provide knowledge for future researchers to find the most effective model to create a spammer 

detection system for Twitter. [18] was published in a CORE A rank conference. 

1.5 Thesis Structure 
 

The thesis is organised into five chapters as outlined below: 

 

Chapter 1: An introduction to spammers in Twitter and the research objectives. This chapter 

outlines the research questions in order to answer the problem statement of finding the most 

effective, efficient and resilient model to identify spammers in Twitter. 

 

Chapter 2: Reviews of spammers on different social media platforms, such as spam in email, 

YouTube and Twitter, and the methods used to identify spammers in those social media. Also, this 

chapter explains in detail the existing techniques to create a spammer detection model, such as 

feature extraction, feature selection algorithms, and evaluation metrics to evaluate the performance 

of a system.  
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Chapter 3: Presents the methodology to find the most effective, efficient and resilient model to 

detect spammers. These methods include how to extract the features from a provided dataset, and 

are followed by experiments to find the optimisation subset of features, the number of recent 

tweets, and classifiers. Lastly, a comparison between the proposed model and the existing systems 

is presented.  

 

Chapter 4: Discusses the experimental results and explains in detail for every experiment and 

shows the ASDF model against spam drift in Twitter. 

 

Chapter 5: The conclusion of the thesis and discussion of improvements are mentioned in this 

chapter.  
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         CHAPTER 2  

LITERATURE REVIEW 
 

The objective of this research is to find an efficient, effective and resilient system for identifying 

spammers in Twitter. To answer this objective, we have formulated three research questions to 

find out the best techniques to build that kind of system based on existing techniques. This chapter 

presents the existing methods related to techniques for detecting spammers on Social Network 

Services (SNS), such as Twitter, YouTube and Email, and we aim to understand the existing 

techniques that have been used to build a spammer detection system. We will use those existing 

techniques to create the WEST that enables us to find a resilient model for detecting spammers 

and answering the research questions mentioned in Section 1.3. 

 

The first research question investigates the collected features to find a good subset of features to 

identify spammers. In this chapter, we have collected 172 content-based and user-based features, 

and we will use our novel tool, WEST, to apply some feature selection algorithms to find the most 

relevant features related to the model. Some of the features might not be relevant to the model; 

therefore, it is important to remove the irrelevant features to improve the performance of the 

system.  

 

The second research question finds the most efficient model to identify spammers. An efficient 

model must detect spammers with high levels of accuracy and in the least time possible. This 

depends on feature selection, the number of recent tweets and classifiers. This chapter shows some 

of the feature selection algorithms used to pick the optimisation subset of features, several number 

of recent tweets for feature extraction used by the existing spammer detection systems, and the 

classifiers used for classification. We will use WEST to perform the experiments to find the best 

model to detect spammers.  

 

The last research question finds a resilient system that could handle the spam drift problem. A 

resilient system must be able to detect spammers with high accuracy when a dataset from a 

different time period is loaded. With WEST, we can perform experiments to see what features are 

effective at overcoming the spam drift problem. 

 

Chapter 2 is structured as follows. Section 2.1 shows the existing works related to detecting 

spammers in Twitter. Section 2.2 introduces spam in other social media and the existing methods 

used to identify spammers in those media. Section 2.3 demonstrates how to collect a dataset, the 

format of the dataset, and how to classify it into spam and non-spam. Section 2.4 explains the 172 

content-based and user-based features collected for this research and some features that we 

proposed. Section 2.5 describes the feature selection algorithms used to find the relevant features 

for a model. Section 2.6 shows the common evaluation metrics to evaluate the performance of a 

system. Section 2.7 mentions the classifiers for training and classifying to find spammers in 

Twitter and lastly, Section 2.8 summarises this chapter. 
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2.1 Spam in Twitter 
 

Users spend a significant amount of time on SNS. Twitter is one of the famous SNS, and millions 

of the users login daily who encounter spam. They use Twitter for storing and sharing personal 

information with their friends, or people around the world. This attracts the interest of 

cybercriminals, such as spammers, who find the personal information valuable for identity theft 

[9]. Spam is an unwanted activity, such as when marketers send members unwanted 

advertisements or steal user information by directing users to malicious external pages [20].  

 

In SNS, spammers employ many techniques to post unwanted messages to users on SNS, such as 

Twitter, for advertisements, scams or spreading of malware through malicious URLs [21]. It is 

easy for humans to distinguish spammers and legitimate users, but it wastes user time and puts 

them at risk of accessing malicious content [1]. Hence, spam is becoming a significant problem 

for users, and therefore many approaches have been proposed to determine whether a user is a 

spammer or not [8]. In our research, detecting a spammer is more important than detecting a spam 

tweet, because spammers tend to send multiple spam tweets. 

 

[22] show that Machine Learning provides powerful techniques for spammer detection in Twitter. 

A spam detection system could use user-based features (which are extracted from user's behaviour) 

or content-based (which are extracted from linguistic features of a tweet) [23]. For example, [1] 

find spammers’ profiles by extracting features from user profiles and training the features with a 

supervised machine learning technique, such as NB and SVM. They evaluate the performance of 

their techniques based on precision (percentage of positive prediction that is correct), recall 

(percentage of positive instance that is predicted as positive), and accuracy (percentage of 

prediction that is correct). [6] extracted the user-based and content-based features from the dataset, 

then ran it with a RF classifier and evaluated the result using the precision and F-measure (the 

harmonic mean of precision and recall). 

 

Spam Drift 

  

While researchers are continuously working to improve the accuracy of spammer detection 

systems, spammers are also tirelessly trying to avoid being detected. Spammers would regularly 

change the behaviour or characteristics of their tweets, for example, posting more tweets or 

creating spam tweets with the same meaning but in different words. Thus, the statistical features 

useful for detecting spammers and spam tweets are changing over time, and this is known as "Spam 

Drift" [24].  

 

In the example below, it can be seen that tweets1 and tweet2 are having a similar content and these 

are the spam tweets. However, the difference between these two tweets is that tweet1 has an URL, 

while tweet2 did not contain any URL. In fact of a system is using an URL-relation feature to 

identify spammers, for example, counting Number of URL per tweet because [25] said that 

spammers are normally using URL in their tweet to increase the change of getting clicked by the 

normal users, therefore in this case, the system will ignored tweet2 as a spam tweet because it is 

not containing any URL in the tweet. This is an example of the problem in spam drift phenomena. 
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For example: 

 

tweet1: Just finished a call. Iâ€™m available now on #NiteFlirt 1-800-To-Flirt, ext: 01617535. 

Give me a call before... http://t.co/HB9gZrs5bl. 

 

tweet2: Just finished a call. I'm available now on #NiteFlirt 1-800-To-Flirt, ext: 01617535. Give 

me a call before I become busy again! 

 

To tackle this problem, [24] update their system frequently with new training data. First, they 

labelled their training data and extracted the features, then applied machine learning to create a 

spammer detection system. Then, updated the training set by adding high-purity spam tweets and 

training the system again every three days with the same features. They have collected their dataset 

in a period of 10 consecutive days. Then they used tweets posted in Day 1 for training purposes 

and Day 2 to Day 10 for testing. They found that the performance of their model is changing over 

time, for example, the detection date of Day 3 (almost 80%) is slightly better than Day 2 (about 

76%), while Day 7 (78%) is about same as Day 6 (77%), and there is a big gap between Day 6 and 

Day 3. Also, they have reported that 92% spamming account will be suspended by Twitter within 

three days. Therefore, they believed that spammers are most likely to change spamming strategies. 

Because of that, they decided to update their training set in every 3 days because if they update 

their training set in a short time period for example, 1 or 2 days then the re-training process will 

be done more frequently, which is time-consuming. On the other side,  if it is too long for updating 

the re-training process then the classifier will become less accurate [24].  

 

[26] proposed three different models: (1) a time-window based model where the system regularly 

trains the system based only on the recent information given in the specified time-window, and 

disregarding the old information; (2) an incremental model where the system regularly trains the 

system based on all of the information they have to date, i.e. old information is retained and the 

latest information is added to the training dataset, which would lead to storage problems; and 

finally, (3) an ensemble-based model, which is the contribution to their work. The ensemble-based 

model can learn incrementally without storing previously seen data. The idea behind this model is 

that the use of a committee of classifiers can provide better results than the best of the single 

classifiers; it uses a voting algorithm to combine the output of multiple classifiers into a single 

decision. Their evaluation shows that the average time-window based model achieved 51.53%, the 

ensemble-based model achieved 60.31%, and the incremental-based model achieved 76.39%. 

 

[3] introduced Lfun scheme to address the "spam drift" problem. This scheme contains two 

components: LDT (Learning from Detected Spam Tweets), that is, learning from detected spam 

tweets. LHL (Learning from Human Labelling) is learning from human labelling. There are three 

stages to this approach and in the first stage, they have labelled the training dataset into spam and 

ham profiles, then trained the LDT component with that dataset and updated the training set with 

the spam tweets detected by LDT component. In the second stage, they used the LHL component 

to differentiate unlabelled tweets into spam and non-spam profiles. For a small number of tweets, 

for example, 100 spam tweets, they asked humans to verify whether the tweets classified by LHL 

are correct or not. In the last stage, they combined the training dataset provided by LDT, and the 

small number of human-labelled tweets becomes the new training set for the RF classifier that will 

predict the incoming tweets as spam. 
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Although other researchers attempted to solve the spam drift issue by regularly retraining their 

model by regularly updating their training dataset, in this research, we hypothesise that if we had 

chosen the correct subset of features to detect spammers, we would be able to tackle the spam drift 

phenomenon without regularly rebuilding the model for classifying the spammers. 

2.2 Spam in other media 
 

Spam is not only a problem that occurs on SNS, but also in email and video sharing social networks 

such as YouTube and Email [27, 28]. In emails, spam can be used for spreading viruses, malicious 

code, or for fraud in banking [29]. Also, spammers may post unrelated video content with a popular 

title or name to increase views from users [30].  

2.2.1 Spam Email Detection 

 

Email is a popular form of communication, providing an easy and reliable method to communicate 

with many people, as one email can spread among millions of people in a moment [31]. Apart 

from the benefit that email provides to us, there is a problem for every email user [32], as shown 

in a study in March 2013, when about 100 billion spam emails were sent out, and many studies 

agree that spam emails have an attributable pattern [33]. To avoid spam emails, we need an 

effective spam filtering system [29]. However, there is no perfect solution to stop incoming spam 

emails [34] and many approaches have been proposed to classify spam emails. 

 

A word-count algorithm could be used to extract the features from an email by removing stop-

words (conjunctions, prepositions, and articles) and non-words (containing special symbols), then 

counting the total number of unique words out of the total words to find the frequency of that word. 

The main idea of this algorithm is to make a dictionary [32]. Next is training the data with a Naive 

Bayes classifier, which calculates the probability of spam or ham (non-spam) and if the probability 

of spam is greater than that of ham, it is considered as a spam email. To evade the system detection, 

spammers would intentionally misspell words, for example, coomputer or c@mputer instead of 

computer [35]. [28, 35] proposed using a word-stemming technique to replace consecutive 

repeated characters to a single character, for example, "discounts", "discounted", or "discounting" 

to "discount". More than that, [28] normalised all the dollar signs($) to be replaced with the text 

\dollar, then created a list of words for each email, then mapped each word in the preprocessed 

email with the vocabulary list (each word in the vocabulary list contains an index), and then trained 

the system with a Support Vector Machine classifier.  

2.2.2 Spams in YouTube 
 

YouTube is the most popular video-sharing social network. In May 2008, 74% of U.S social 

network users viewed 12 billion videos, and 34% of this number were from YouTube [36]. By 

allowing users to share their videos, users may become susceptible to different types of malicious 

content [30]. 
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To find spammers on YouTube, [36, 37] proposed to extract a number of attributes from users 

(number of videos uploaded, and number of videos watched) and video features (number of views, 

and duration). However, this classifier is slow on a whole dataset with 264,460 users and not 

efficient on multiple classes for finding legitimate spammers and promoters. To solve this, [27] 

proposed the use of SVM-KNN which trains a Support Vector Machine on K-number of features 

of nearest neighbours. However, it appears that the users and videos feature is not useful in helping 

us find spammers, because Twitter does not have those attributes. 

2.3 Dataset 
 

There are many ways to collect the dataset, for example, using Twitter API [5, 14, 38] but it only 

allows 150 requests per hour. To overcome this limitation, four servers and 120 IP addresses can 

be deployed and make the servers change their IP address whenever the current IP address is 

reaching the limit [10]. Once a dataset is collected, it could be classified as spam or non-spam 

manually [6], or the Amazon Mechanical Turk (AMT) volunteers can be asked to evaluate every 

tweet and assign all tweets into desired groups [14]. We must pay to use AMT and it might take a 

long time for workers from AMT to evaluate thousands of tweets.  

 

However, there are some public datasets available on the Internet that already classify into spam 

or non-spam; for example, [22] involved the dataset from [7] which includes 1065 users: 355 

spammers and 710 non-spammers. In our system, we will use the dataset from [11] and [39] 

because these are the only datasets that we could find in a raw format and they are already classified 

into legitimate and spam users. 

2.4 Feature Extraction 
 

Feature extraction is a process of extracting features that can be utilised by a machine learning 

technique to produce accurate results [32]. In this section, commonly used features can be 

organised into two categories: content-based and user-based. User-based features are used for 

detecting the spammers, and content-based features are used for detecting the spam tweets. In this 

research, we do not use other based features, such as graph-based, because the dataset [11] and 

[39] that we will use for this research does not have enough information to extract the graph-based 

features, and also it takes a long time to download the required data; thus we only use content-

based and user-based features.  

2.4.1 Number of recent Tweets 
 

Several authors have extracted features from different numbers of tweets recently. [25] used all 

tweets, [17] used the 20 most recent tweets and [6] used the 100 most recent tweets. However, 

these approaches used different techniques, so it is hard to determine the best numbers of recent 

tweets. However, this points out that we could use one of the above number of recent tweets for 

feature extraction, and we could also find the optimisation number of recent tweets in this research. 

  



22 

 

2.4.2 Content-Based features 
 

Content-based features are linguistic features extracted from the content of tweets [15], and Table 

1 shows a list of content-based features. Spammers often used a shortened URL service to lure 

legitimate users and Twitter does not check the legitimacy of shortened URLs. Additionally, 

spammers tend to use the same URLs in multiple tweets to increase the chance of getting it clicked 

by legitimate users [25]. Features that are related to URLs have been utilised by most researchers, 

for example, Number of URLs [38], Number of URLs per word [15], or Number of unique URLs 

[40]. 

 

The #hashtags is used to describe a term; if there are many tweets containing the same term, then 

it will become a trending topic [6]. Spammers often include a trending topic in their tweets with 

unrelated content to lure legitimate users to access their tweets [10]. Similar to URL features, 

#hashtags could be expanded to other forms such as Number of #hashtags per word on each tweet 

[15]. 

 

In Twitter, users can include @username in their tweets, called a mention. The mentions could be 

sent to any receivers even when they are not followers or followings of a sender. Spammers tend 

to use this function to send spam tweets [10]. This feature has been used by several authors, such 

as [6, 25]. 

 

Additionally, spammers often post a larger number of spam words in their tweets than normal 

users. [7] observed that 39% of spammers in their study posted all their tweets containing spam 

words but legitimate users do not post more than 4% of their tweets containing spam words. 

Therefore, a spam word feature is considered in some papers, for example, [6, 7] used a spam word 

list from Wordpress.org. One step further, [14] found the percentage of words that are not found 

in a dictionary and achieved only 80% accuracy. 

 

In Table 1, "The tweet (feature number 14)" and "Twitter client (feature number 30)" features will 

not be extracted in this research because "The tweet" feature is not clearly explained and "Twitter 

client" feature is no longer supported by Twitter.  

Table 1 - Table of content-based features 

 Content-Based 

Feature No Feature name Definition References 

 URL/HTTP Links 

1 Number of URLs Find out number of URLs on a tweet [6, 14, 20, 38, 40, 41] 

2 Number of URLs per word Find out number of URLs per word on a tweet [15] 

3 Whether the link points to a 

Social media domain 

Check if a URL is Twitter, Facebook, or YouTube... [14] 

4 Number of unique URLs Number of unique URLs on a tweet [40] 

 Hashtags 

5 Number of hashtags per tweet Find out number of #hashtags on a tweet [6, 14, 15, 38, 41] 

6 Number of hashtags per word 

on each tweet 

Find out number of #hashtags per word on a tweet [15] 

 Mentions 

7 Number of mentions Find out number of @mentions on a tweet [6, 14, 15, 21, 40] 

8 The number of mentions per 

word 

Find out number of @mentions per word on each tweet [7], [15] 
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2.4.3 User-Based features 
 

User-based features can be derived from specific properties of user behaviour [7]. Spammers try 

to follow a large number of users to gain their attention [6]. For user-based features, the number 

of followings, followers, and reputation are the common features that have been used together. 

The following feature means someone follows other accounts; the follower is the opposite of 

following, and the reputation determines a person influential on Twitter. 

 

[6] proposed a Random Forest classifier approach to detect spammers, extracted following and 

follower features and achieved 95.7% precision in comparison. According to [43], this model used 

 Special characters 

9 Number of exclamation 

marks 

Find out number of exclamation marks on a tweet [15] 

10 Number of question marks Find out number of question marks on a tweet [15] 

 Numeric 

11 Numeric characters Find out number of numeric characters on a tweet, for example 

1,2,3 etc. 

[17] 

 Retweets 

12 Whether the tweet is a retweet Check if a tweet is a retweet [14] 

13 Number of Retweets Find out a total number of retweets on a tweet [6, 38] 

 Tweets/Words 

14 The tweet Determine the writing style.  [42] 

15 Number of consecutive words Count the total number of consecutive words on a tweet. Every 

two words is a consecutive word, for example, "Social Network 

Analysis" is two consecutive words. 

[14] 

16 Number of characters per 

tweet 

Count the total number of characters in a tweet [7, 38] 

17 Number of whitespaces per 

tweet 

Count the total number of blank spaces on a tweet [15] 

18 Number of capitalised words 

per tweet 

Count the total number of Capitalised words on a tweet. If the 

first character of a word is a capital, then it is a capitalised word. 

For example, in "Social NETWORK aNalysis", the capitalised 

words are "Social" and "NETWORK". 

[15] 

19 Number of capitalised words 

per word on each tweet 

Count the total number of Capitalised words per word on a tweet. [15] 

20 Duplicate Tweets Find out the total number of duplicated tweets. If two tweets are 

exactly the same, then it is considered as a duplicated tweet. 

[17] 

21 Percentage of words not 

found in a dictionary 

Find out the percentage of words not found in a dictionary on a 

tweet 

[14] 

22 Tweets contain Places Check if a tweet contains any cities [14] 

23 Tweets contain Organisation Check if a tweet contains any Organisation names [14] 

24 Tweets contain name Check if a tweet contains any names for example,  [14] 

25 Tweets contain social media 

domain 

Check if a tweet contains any social media domain [14] 

26 Number of words The total number of words on a tweet [7], [15] 

 Spam-words 

27 Number of spam words per 

tweet 

Find out the total number of spam words on a tweet [6, 7, 15] 

28 Number of spam words per 

word on each tweet 

Find out the total spam words per word on a tweet [15] 

29 Time of publication The time a tweet has been posted [42] 

30 Twitter Client Twitter client (i.e., Pcs, smartphone or laptop) [42] 
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followings, followers and reputation features crawled from Twitter API and achieved 100% 

precision based on Neural Network and SVM classifiers, however, in fact of choosing a consistent 

model, Naïve Bayes is better than Neural Network and SVM, because it is achieved 91.7% across 

the evaluation metrics. While [17] used the followings, followers, and reputation but achieved only 

89% precision based on Naive Bayes classifier. [21] and [1] used the same Followers-to-

Following-Ratio feature. Spammers attempt to follow many accounts and try to create a 

relationship with their followings, but it is hard to get the follow-back, and the feature makes sure 

that each account maintains a healthy ratio of their followers and followings to avoid being 

suspended, and [21] proposed an approach that can detect 93.6% of spammers while [1] achieved 

89% precision.  

 

On the other hand, [4] said that the number of followings, followers and reputation and Followers-

to-Following-Ratio could be evaded since spammers could purchase followers from websites with 

a small amount of money. Thus, [4] introduced a new feature called Bi-directional Links Ratio; if 

two accounts are following each other, they are considered a Bi-directional link. The idea behind 

this feature is that even though spammers increase their number of Bi-directional links, they need 

to pay more to buy followers to evade this feature, so it is worthless for them [4]. Hence, it seems 

like the Bi-directional Links Ratio feature is effective, because it is hard for spammers to evade. 

 

In many cases, spammers insert a malicious URL and convert it into a shortened form [40]. A 

study shows that spammers tend to post about 95% of tweets containing URLs, and normal users 

post only 7% of tweets containing URLs [44]. The following two efficient features, URL rate and 

Interaction Rate, have been proposed by [44]. The Interaction Rate is proved by [44] as an 

effective feature because normal users usually have interaction with their friends (followings or 

followers). In contrast, spammers do not have such interactions with normal users, and usually just 

post URLs and also spammers have a larger proportion of tweets containing URLs than normal 

users, so the URL rate is finding the number of tweets containing URLs over the total number of 

tweets posted by a user. It is hard to evade this feature, unless spammers just post spam tweets 

without any URL, so there is not much information in the tweets [44]. 

 

There is another effective feature called Fraction Mention to Non-Follower, which is expanded 

from the @mention feature. This feature represents a relationship between the sender and the 

receiver, and the connectivity and distance between a legitimate user and their followers is 1. 

However, spammers tend to use the @mention technique to random users, and the distance must 

be greater than 1 [10]. Table 2 shows all the user-based features we have collected during a review 

of the existing systems.  

Table 2 - Table of user-based features 

  
User-based features 

 Account profile features 

Feature No Feature name Definition Reference 

1 Number of followers Find the number of followers of a user  [6, 7, 40, 41] 

2 Number of followees Find the number of followees of a user  [6, 7, 17, 40, 41] 

3 Reputation Find out the reputation of a user [6, 7, 40] 

4 Ratio follower to following Find out the ratio of follower to followee of a user [1, 7] 

5 Age of account Find out the age of an account [7, 40] 

6 Bi-directional Links Ratio The number of followers that a user is following back [4, 40] 
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7 Interaction rate 

Check whether the user of a tweet reply is a friend of the 

observed account or not. If the user is in the friend list, then a 

tweet receives an interaction. 

[44] 

8 
Fraction of mention non 

follower. 
Find out the fraction of mentions sent to non follower. [10] 

 #HashTag relation features 

1 

Average, Maximum, 

Minimum, Median number 

of hashtags 

Find out the max, min, median, and average number of 

#hashtag used by a user 
[44], 5] 

2 

Maximum, Minimum, 

Median number of hashtags 

per word 

Find out the max, min, median number of hashtags per word 

used by a user 
[7] 

3 Fraction of hashtags Find out the fraction of tweets with #hashtag on a user [10] 

4 Hashtag ratio The ratio of tweets containing Hashtag [10] 

 @Mention relation features 

1 

Average, Maximum, 

Minimum, Median number 

of mentions 

Find out the average, max, min, and median number of 

@mentions of a user 
[7] 

2 Fraction of mentions Find out the fraction of @mentions of a user [5] 

3 

Average, Maximum, 

Minimum, Median  number 

of tweets retweets  

Find out the average, max, min, and median number of retweets 

of a user 
[11], 5] 

4 
Total number of times user 

was mentioned 
Find out the total time a user was mentioned [44] 

 URL relation features 

1 

Average, Maximum, 

Minimum, and Median 

number of URLs 

Find out the average, max, min, and median number of URLs 

of a user 
[7] 

2 

Average, Maximum, 

Minimum, and Median 

number of URLs per word 

Find out the average number of URLs per word of a user [7], 10] 

3 Fraction of URLs The ratio of URLs to the number of tweets [1, 44] 

4 Ratio Unique URLs The ratio of unique URLs to the number of tweets [40] 

5 URL rate The ratio of URL rate [44] 

6 
Number of spam words in 

screen name 
Find out the number of spam words in screen name of a user [7] 

7 Fraction of spam tweets Find out the fraction of spam tweets of a user [7] 

8 Length Profile name Count the number of characters on a user profile name [7] 

9 Average spam tweet count Find out the average spam tweet count of a user [11] 

 Tweets relation features 

1 
Number of tweets early 

morning 
Count number of tweets posted between 3:00 am - 6:00 am [6] 

2 

Maximum, Minimum, 

Average, Median, and 

Standard deviation amount 

of time between tweets 

Maximum, min, average, median, and standard deviation idle 

time between tweets 
[7], 8] 

3 

Maximum, Minimum, 

Average, and Median 

number of characters 

Maximum, min, average, and median number of characters 

from all tweets of a user 
[7] 

4 

Maximum, Minimum, 

Average, Median number 

of words 

Maximum, min, average, and median number of words from all 

tweets of a user 
[7] 

5 
Number of Duplicated 

tweets 
Total number of duplicated tweets of a user [1] 

6 
Fraction of duplicated 

tweets 
The fraction of duplicated tweets of a user [10] 

7 
Maximum number of 

consecutive words 

Maximum number of  consecutive words from all tweets of a 

user 
[14] 

8 Length Description The number of characters of description from a user [15] 

9 Number of tweets Total tweets posted by a user [7],[15] 

10 
Average, Mean, Maximum 

tweet length 
Average, mean, and max tweet length of a user [9, 10, [38] 

11 
Average time between 

posts  
Find out the average time between tweets  [1] 

12 
Max idle duration between 

posts 
Maximum idle time between tweets [11] 
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13 
Tweet similarity - tweet 

cluster 

Find tweet similarity by checking number of unique tweets 

from a user 
[11] 

14 
Tweet similarity - Cosine 

Similarity 
Find duplicated tweets using Cosine Similarity algorithm [40] 

 Distribution of tweets in 24 hours / Days / Weeks 

1 First, Second, to Eighth set 
Number of tweets posted at first set (midnight to 2:59), second 

set (3:00am - 5:59am), ... eighth set (21:00pm - 23:59pm).   
[6] 

2 
Number of tweets early 

morning 
Number of tweets posted between 3:00 am - 6:00 [6] 

 Monday to Sunday relation features 

4 

Number of tweets on 

Monday, Tuesday, 

Wednesday, Thursday, 

Friday, Saturday, and 

Sunday 

Total number of tweets posted on each day of the week. [15] 

5 

Maximum, min, median, 

and average number of 

tweets on Monday, 

Tuesday, to Sunday 

Maximum, min, median, and average number of tweets posted 

on each day of the week. 
[7] 

 Numeric relation features 

1 

Maximum, Minimum, 

Average, and Median 

number of numeric 

Maximum number of numeric on a tweet [7] 

 Weeks relation features 

2 

Maximum, Minimum, 

Median, and Average 

number of week 

Maximum number of tweets posted in one week [7] 

 

To see exactly the hours spammers tend to be active, we have also added 24 features, which 

correspond to 24 hours, as shown in Table 3 below.  
 

Table 3 - Invented features based on distribution of tweets in 24 hours 
 

 Invented features derived from Distribution 24-hours features 

 Feature name Definition Reference 

1 Number of tweets posted at midnight, 1:00 am, 2:00 

am, 3:00am to 23:59pm 

Number of tweets posted at midnight, 1:00, 2:00, 3:00 to 

23:00 

Invented 

2.5 Feature Selection 
 

Data almost always contains more information than is needed to create a model and in this research 

more than 100 features will be extracted, and some of them in the training dataset are very sparse 

or unrelated, so this will affect the performance of a model if we add them to it. Feature selection 

is a step of selecting features that are most relevant to a model or removing the unrelated features 

to improve the accuracy of a system [45, 46] and some of the feature selection algorithms are 

Information Gain, Chi-Square, Ranker and CFSSubsetEval. The benefit of feature selection is 

improving the quality of a model and more efficient as less time is needed for feature extraction, 

building a model and evaluating processes. [10] used Information Gain and Relief methods to find 

the best five features and [7] used Information Gain and Chi-Square to select the attributes. 

 

In our research, we have collected 172 features. Therefore, we use those feature selection 

algorithms above to find the optimisation subset of features that are most relevant to the model. 

Chi-Square 
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A Chi-square is used to calculate the worth of an attribute by calculating the chi-square statistic 

compared to the class. The first step is to find the chi-square statistic value; we need to calculate 

the expected value as shown below [47]. 

 

𝐸(𝑟. 𝑐) =
𝑛(𝑟) ∗ 𝑐(𝑟)

𝑛
 

Equation 1 - Expected value format 

Where 'r' is the row in the dataset, 'c' is the column, and 'n' equals the corresponding total. In the 

next step, we could calculate the chi-square statistic value by using Equation 2 below. 

 
 

Equation 2 - Chi square formula 

Where 'O' is the observed value and 'E' is the expected value. Once, we found the chi-square 

statistic values, then we could use the ranker method to select the features. 
 

CFSSubsetEval 

 

CFS stands for correlation-based feature selection, and the core idea of CFS is that good subset 

features are highly correlated to the class outcome, but unrelated to each other by evaluating the 

worth of the attributes through considering the individual predictive ability of each feature [48].  

 

Information Gain 

 

Information Gain values an attribute based on the decrease in entropy after a dataset is split on that 

attribute. To find the Information Gain of an attribute, we need to calculate two types of entropy: 

the entropy of the target and the average entropy of attribute. Equation 3 below shows how to 

calculate the entropy of the target. The term "c" here is the number of classes, and we can denote 

the proportion of instances with classes i by pi for i = 1 to "c".  

 

∑  − 

𝑐

𝑖=1

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 

Equation 3 - Formula to calculate the entropy of the target 
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Table 4 - Example of training set for play golf 

 Play Golf  

Yes No 

 

Outlook 

Sunny 3 2 5 

Overcast 4 0 4 

Rainy 2 3 5 

   14 
 

Assume we have a dataset, as shown in Table 4. So, we have 2 classes: Yes, and No. The number 

of occurrences of class Yes is 9 (3+4+2) and No is 5 (2+0+3). The value of pi is the number of 

occurrences of class i divided by the total number of instances. According to the formula above, 

we have:  

 

Entropy (Play Golf) = Entropy (9,5) = Entropy (9/14, 5/14) = -(0.64log2 0.64) - (0.36 log2 0.36) = 

0.94. 

 

In the example above we have 3 attributes: Sunny, Overcast and Rainy. Based on Equation 4, the 

average of entropy for these attributes is calculated as follows: 

E (Play Golf, Outlook) = P(Sunny) * E(3,2) + P(Overcast) * E(4.0) + P(Rainy) * E(2,3) = (5/14) 

* 0.971 + (4/14) * 0 + (5/14) * 0.971 = 0.693 

𝑬(𝑻, 𝑿)  =  ∑ 𝑷(𝒄)𝑬(𝒄)

𝒄∈ 𝑿

 

 
Equation 4 - Average entropy of the attributes 

We can calculate the information gain for Outlook by subtracting the Average Entropy of Attribute 

from Entropy of Target. So the result will be 0.940 - 0.693 = 0.247. We then apply this equation 

to the other attributes to find the value for them, then select the best attribute based on the highest 

value. 

Ranker 

 

Ranker ranks the attributes according to some evaluation criteria, such as Information Gain, or 

Chi-Square and returns the top Nth attribute; for example, if we set ranking method to 10 for 

Information Gain, then it will return the top 10 best attributes ordered according to their 

Information Gain values from highest to lowest [49]. 

2.6 Evaluation Metrics 
 

In a spam detection system, Precision, Recall, F-measure and Accuracy are the common 

evaluation metrics to evaluate the performance of a system. To calculate those evaluation metrics, 

we need to find True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 

(FN) values. TP means that spam tweets are correctly classified as spam, TN means that normal 

tweets are correctly classified as normal, FP means that legitimate tweets are classified as spam, 



29 

 

and FN means the number of spam tweets classified as normal tweets [8, 10]. Once we have 

evaluated the performance of a system, we will use ANOVA, t-test and equivalence testing to 

compare the performance of that system against the performance of all the other systems. 

 

Precision 

 

Precision is a measure of the classifiers exactness [38]. To calculate the precision, it requires True 

Positive and False Positive values, and the formula is TP / TP + FP. Also, it is important to be very 

precise, because precision calculates the occurrence of false positive which are the good tweets 

classified as spam. Hence, it is important for the precision to be at a high level [50]. 

 

Recall 

 

Recall is a measure of a classifier completeness [51]. To calculate the recall, it requires True 

Negative and False Negative values, and the formula is TN / TN + FN [50]. 

 

F-Measure 

 

F-measure is a harmonic means of the precision and recall; the best result is 1, and the worst is 0 

[15]. The formula to calculate F-measure is 2 * TP / (2 * TP + FP + FN).  

 

Accuracy 

 

Accuracy is the percentage of all correctly classified profiles [1]. It is important to use accuracy 

because when evaluating classifiers, a good balance between precision and recall rates is required, 

therefore it is necessary to use a strategy to obtain a combined score so accuracy is considered [50] 

and the formula to find accuracy is ( (TP+TN) / (TP+FP+FN+TN) )*100. 

 

True Positive Rate 

 

The actual spams correctly classified as spam. It is calculated as TP / (TP + FN). 

 

Time 

 

Here, we look at three criteria, such as input processing time, building model time and classifying 

time, which may improve the performance of the proposed system. Input processing time means 

when we extract the features from the dataset, we want to find out how long it takes our system to 

extract the features needed. Building model time is about the learning time of the classifiers. 

Classifying time shows how fast a system could detect spammers. 

 

Class Imbalance 

 

With any Twitter dataset, we have a class imbalance problem where there are a lot more normal 

users compared to spammers in the dataset. [52] counted only 1% of spam profiles from their 

dataset. Imbalance dataset is common thing [51] and in this case it is more important to accurately 

predict users as spammers than accurately predict users as legitimate users; the TP rate for 
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spammers is a better evaluation criterion than Accuracy. Furthermore, the TP rate for spammers is 

a better criterion than Precision because we would like to predict as many spammers as possible. 

It is better for us if legitimate users are predicted as spammers rather than the other way around. 

Out of all the metrics mentioned above, the TP rate is the important metric in this research [51]. 

 

T-Test 

 

The T-Test compares two averages together and tells us if they are significantly different from 

each other. The ratio of T-test is called t-score; this number is telling the difference between the 

group and the larger t-score, and the greater difference there is between groups. [53] 

 

There are three main types of T-Test: 

 An Independent Sample t-test compares the means of the two groups. 

 A Paired Sample t-test compares the means from the same group at different times. 

 A One sample t-test compares the mean of a single group against a known mean. 

In this research we use a paired sample t-test to compares the mean of two models because each 

model is trained on the same dataset but they are subjected to different subset of features being 

used for classification. 

 

ANOVA 

 

An ANOVA test is a way to find out if two or more than two experimental results are significantly 

different from each other. There are two main types of ANOVA: one-way and two-way, and two-

way can be tested with or without replication. 

 

One-way is used when you want to test two or more groups to see if there is a difference between 

them. Two-way without replication is used when you have one group, and you are double-testing 

that same group. While, with replication, they are used when you have two groups and the 

members of those groups are doing two or more than two things [54].  

 

In this research we use two-way without replication technique to compare the performance of the 

models because each model is trained on the same dataset but we have two independent variables: 

classifiers and the subset of features used to build the model. 

 

Equivalence Testing 

 

We use the equivalence test to determine whether the means for the experimental results are close 

enough to be considered equivalent [55]. We calculate the maximum interval by adding the 

average and standard deviation and calculate the minimum interval by substracting the standard 

deviation from the average. A good system is a system that has high maximum and minimum 

interval with small standard deviation. 
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2.7 Algorithms 
 

The extracted features from the dataset will be fed to the algorithms for training the system. 

According to [23], most of the spammer detection systems have used Support Vector Machine 

(SVM), Decision Tree (DT), Naïve Bayesian (NB), and Random Forest (RF) as their classifiers. 

The RF classifier performed well under a small number of the features; the advantage of SVM is 

that the accuracy does not decrease when we are dealing with many features [8]; DT requires little 

data preparation; and the NB classifier takes little time for training even with a large dataset [20]. 

For our research, those classifiers could be considered because they are commonly used in research 

[23].  

 

Nearest Neighbour Classification 

Nearest Neighbour classification is mainly used when all attributes are continuous, and it can be 

modified to deal with categorical attributes. The ideas of Nearest Neighbour is to classify new data 

by using the training data that are closest to it. It is usual to base the classification on those of the 

k nearest neighbour, while the term "k" represents a small integer, such as 2, 3 or 5. To find the 

best k values, we need to try different k values (e.g. from 1 to 21) for our problems [56]. This 

method is known as K-NN or K-Nearest Neighbour and the basic of K-NN as follows: 

 Find the k training instances that are closest to the class target. 

 Take the most commonly occurring classification for these k instances. 

To find the "k" training instances, we measure the distances between the unseen data across the 

training set and sort it from shortest to longest. There are many possible ways of measuring the 

distances, but the most popular is Euclidean Distance. As shown in Figure 1, if we denote an 

instance in the training set by (a1,a2) and new data by (b1,b2), the distance between the points is 

calculated as Equation 5. 

 

√(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 

 

Equation 5 - Distance between the points formula 

 

 

Figure 1 - Euclidean Distance formula 
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Just for illustration, we will set k to 3, and it is an odd number, so we do not have a tie. After 

finding the distances between the new data and training set, then we will choose the 3 most similar 

neighbour (shortest distance) instances to contribute to our prediction. 

 

Decision Tree 

Decision tree is an important type of machine learning algorithm used to make a prediction to the 

target class. The method produces a set of rules by breaking down the complex decision process 

into a tree structure until the decision is made for the output [57]. This set of rules will be used to 

perform a prediction on the test set.  

Table 5 presents an example of the training dataset to predict a condition that is whether a player 

is going to play golf or not. In this example, there are 14 objects (5 sunny, 4 overcast, and 5 rain) 

that were collected through observation of weather conditions. Every object is described by the 4 

attributes: Outlook, Temp, Humidity, and Windy, and a classification attribute.  

Table 5 - Example of training set for decision tree 

Outlook Temp (F) Humidity (%) Windy Class 

sunny 75 70 true Play 

sunny 80 90 true don't play 

sunny 85 85 false don't play 

sunny 72 95 false don't play 

sunny 69 70 false Play 

overcast 72 90 true Play 

overcast 83 78 false Play 

overcast 64 65 true Play 

overcast 81 75 false Play 

rain 71 80 true don't play 

rain 65 70 true don't play 

rain 75 80 false Play 

rain 68 80 false Play 

rain 70 96 false Play 
  

One of the important parts of the decision tree is to determine which attribute is the best to be used 

at each node. To examine the performance of attributes, we use Information Gain as mentioned in 

Section 2.6 to find the information gain value for every attribute, then we choose the attribute with 

the highest value.  

 
According to the example above, we can construct a decision tree, as shown in Figure 2. 
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Figure 2 - All the subsets are pure and ready to make a prediction 

In order to determine the decision, we go through the set of rules created by the decision tree above. 

Start at the root node (Outlook). It can be seen that there are three possibilities. 

1. If the Outlook is sunny, the next attribute to look at is Humidity. Then, we can see that if 

the humidity is less than or equal to 75 the decision is to play. Otherwise, don't play. 

2. If the Outlook is overcast, the decision is play. 

3. If the Outlook is rain, the attribute to consider next is Windy. If it is windy, then the 

decision is don't play. Otherwise, the decision is play. 

Note that, the attribute Temp was not used in this decision tree because its information gain value 

is low. Thus, if we had the information that the outlook was sunny, with 74% humidity and there 

was no rain, following the rules above, the decision will be to play golf. 

 

Support Vector Machine 

 

Support Vector Machine is a supervised machine learning that can be used for classification and 

regression. However, it is more commonly used for classification purposes. The main idea of 

Support Vector Machine is finding a hyperplane that best separates the training data into two 

classes (blue and green dots), as shown in Figure 3 [58]. The blue and green datapoints closest to 

the hyperplane are called support vectors. 

  

 

Figure 3 - Example of hyperplane 
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In two-dimensions we can visualise this as a line and all of the support vectors can be completely 

separated as follows: 

 

𝐵0 +  (𝐵1  ∗  𝑋1)  +  (𝐵2  ∗  𝑋2)  =  0 

Equation 6 - Calculation of the hyperplane formula 

Where X1 and X2 are the input data, while B0 is the intercept, and B1 and B2 are the coefficients 

that determine the slope of the line calculated by the learning algorithms, such as Linear Kernel 

SVM. By plugging in the input values into the equation above, we could make a prediction on 

which class new input data belongs to.  

The Linear Kernel SVM model is a line, and the goal of the learning algorithm is to find values 

for coefficients that best separate the classes [58]. To discover the coefficients’ value, we could 

use sub-gradient descent, and this technique will iterate through the training data and update the 

coefficients.  After the iteration, we will settle on a stable set of coefficients. 

 

Below is the equation to find the output for every iteration update. However, two different types 

of updates are used, and it depends on the output results.  

  

Output = 𝑌 + ((𝐵1  ∗  𝑋1)  +  (𝐵2  ∗  𝑋2))  

Equation 7 - Calculation of every iteration update formula 

If the output is greater than 1, it suggests that the training pattern was not a support vector. That 

means that instance is not involved in calculating the output, so the weight is slightly decreased as 

follows: 

 

𝑏 =  (1 − 1/𝑡)𝑏  

Equation 8 - Calculation of the weight if greater than 1 formula 

Where b is the weight that is being updated, such as B1 or B2, and t is the current iteration. On the 

other hand, if the output is less than one, then that instance is involved in calculating the output, 

so the weight is calculated as follows: 

 

𝑏 =  (1 − 1/𝑡)𝑏 + 1/(𝑙𝑎𝑚𝑏𝑑𝑎 ∗ 𝑡)(𝑦 ∗ 𝑥)  

Equation 9 - Calculation of the weight if less than 1 formula 

The lambda is a learning parameter, and it is often set to a very small value, such as 0.0001 or 

smaller. 

 

Once, we found the weight (B1 and B2), we could plug these results into the equation below and 

the prediction can be made using the following equation: 
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𝑌 =  (𝐵1 ∗ 𝑋1) + (𝐵2 ∗ 𝑋2) 

𝐼𝑓 𝑌 >  0, 𝑌 =  1 

𝐼𝑓 𝑌 <  0, 𝑌 =  −1  

Equation 10 - The prediction formula 

Naive Bayes 

 

Naive Bayes is a classification algorithm for binary (two classes) and multiclass classification 

purposes [59]. It is called Naive Bayes because the calculation of the probabilities for each 

hypothesis is based on Bayes theorem, as stated in Equation 11 below. 

 

𝑃(𝐻|𝐸)  =  
𝑃(𝐸|𝐻) ∗  𝑃(𝐻)

𝑃(𝐸)
 

Equation 11 - Conditional probability formula 

where: 

 P(H) is the class prior probability. 

 P(E) is the prior probability of predictor (attribute). 

 P(E| H) is the probability of predictor given class. 

 P(H|E) is the posterior probability of class given predictor. 

There are two types of quantities that need to be calculated from the dataset for the Naive Bayes 

model: 

 Class Probabilities P(H) - are the frequency of the instances that belong to each class 

divided by the total number of instances. 

 Conditional Probabilities - are the frequency of every attribute value for a given class value 

divided by the frequency of instances with that class value. 

Let's say we have a dataset as shown in Table 6. It can be seen that, there are 2 classes (class 1 

and 2) in the dataset and every class has 5 attributes. So the Class Probabilities for Class 1 and 2 

are calculated as  

 

 P(H) = P (Class 1) = (class 1) / (class 1+ class 2) = 0.5 

 P(H) = P (Class 1) = (class 2) / (class 1+ class 2) = 0.5 

Where 

 Class 1 = total number of instances belonging to class 1. 

 Class 2 = total number of instances belonging to class 2. 
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Table 6 - Example of a dataset 

Weather Car Class 

1 1 1 

0 0 1 

1 1 1 

1 1 1 

1 1 1 

0 0 0 

0 0 0 

1 1 0 

1 0 0 

0 0 0 
 

Since, we found the class probabilities, the Conditional Probabilities for the weather attribute is 

calculated as follow: 

 

 P(E|H) = P (Weather| Class) = count (weather = 1 ∧ class = 1) / count (class = 1) = 0.8 

 P(E|H) = P (Weather| Class) = count (weather = 0 ∧ class = 1) / count (class = 1) = 0.2 

 P(E|H) = P (Weather| Class) = count (weather = 1 ∧ class = 0) / count (class = 0) = 0.4 

 P(E|H) = P (Weather| Class) = count (weather = 0 ∧ class = 0) / count (class = 0) = 0.6 

The ∧ symbol presents the conjunction (AND). Then, we have to repeat the above steps to find 

the conditional probabilities for Car, and we get: 

  

 P (car = 1 | class = 1) = 0.8 

 P (car = 0 | class = 1) = 0.2 

 P (car = 1 | class = 0) = 0.2 

 P (car = 0 | class = 0) = 0.8  

 

Given a Naive Bayes model as below: 

  

𝑃(𝐻|𝐸) = 𝑃(𝑒1 | 𝐻)  ∗  𝑃(𝑒2 | 𝐻) . . . 𝑃(𝑒𝑛 | 𝐻)  ∗  𝑃(𝐻)   

Equation 12 - Naive Bayes model 

We could make a prediction for new data based on Bayes theorem as follows, where e1 is the first 

instance in the dataset. For example, let's use the first instance in the dataset (Weather =1, Car = 

1) as shown in Table 6 above, then we get 

 

 Class 1 = 0.8 * 0.8 * 0.5 = 0.32 

 Class 0 = 0.4 * .0.2 * 0.5 = 0.04 
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In the final step, we can choose the highest calculated value as class 1 (0.32), while the smaller 

calculated value as class 0 (0.04). Thus, we predict (Weather = 1, Car =1) "class 1" for this instance, 

which is correct.  

 

Random Forest 

 

The Random Forest algorithm is a supervised classification, and it can be used for both 

classification and regression [60, 61]. It works in a similar way to the Decision Tree algorithm; 

however, it constructs multiple trees at training time. In general terms, the more trees in the forest 

the more robust the forest is and thus usually it gives more accurate results.   

 

Below is the pseudocode to explain how the Random Forest classifier works. The pseudocode can 

be split into two stages [61].  

 Random Forest creation pseudocode. This stage creates a model to find the class target 

based on the training set, and it includes 5 steps: 

1. Randomly select a "x" feature from the total number of features. 

2. Among the "x" feature, calculate the node "d" using the best split point (e.g. 

Information Gain), which means, we are using the randomly selected 

feature "x" to find the root node by using the best split method. 

3. Split the node from Step 2 into child nodes using the best split method. We 

keep using the same split method until we form the tree with root node and 

having a leaf node which is the class target. 

4. Repeat steps 1 to 3 until 'i' number of nodes has been reached. 

5. Repeat steps 1 to 4 to build forests for "n" number of times to create "n" 

number of trees. 

 Pseudocode to perform prediction from the created random forest classifier. In this 

step, we pass the testing dataset to make a prediction using the trained model in the 

previous step.  

1. Take the testing dataset and apply the set of rules from the previous stage to 

predict the outcome or store it. 

2. Calculate the votes for each outcome. 

3. Consider the highest votes to be the best outcome. 

2.8 Chapter summary 
 

This chapter outlines the existing techniques to detect spam or spammers for Social Media 

Services, such as YouTube, Emails and Twitters. In this research, we have aggregated 172 content-

based (refer to Table 1), and user-based (refer to Table 2 and 3) features from different systems [4, 

6, 7]. There are differences in the results for every existing method, because they used different 

subsets of features, although some of them used the same one or two features, such as 

Amleshwaram, Reddy, Yadav, Gu and Yang [21] and [1] used Followers-to-Following-Ratio, but 

the rest of the features from [21] were different [1], thus we do not know which is the best group 

of features. The common features in content-based URLs, @mentions, and #hashtags have been 

utilised by most of the researchers. Additionally, Numbers of followers, or Numbers of followees 
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are the most common features for user-based. These content-based and user-based features have 

been expanded into many forms, such as Number of #hashtags per word on each tweet [15] or 

Fraction of @mention to non-followers [10]. 

In order to create spam or spammer detection systems, the researchers extract features to build 

their models. However, some of the features may or may not be relevant to their system [45]. Thus, 

the feature selection techniques, such as InfoGain and CFSSubsetEval, are used to select the more 

relevant features when a system utilises many features. Then, the features could be plugged to the 

classifiers, as mentioned in Section 2.7 to detect spammers. The most common classifiers that have 

been used to build spam or spammer detection systems are Random Forest, Naive Bayes, Support 

Vector Machine, Decision Tree, and K-NN [6, 8, 11, 42]. The common evaluation metrics for 

those systems are Precision, Recall, F-Measure, Accuracy and True Positive. However, due to the 

class imbalance in the dataset, the best evaluation metric to use is True Positive. 

 

Even when a system produces very good results, for example, [17] achieved 89% in Precision 

based on Naive Bayes, or achieved 95% in Precision based on Random Forest classifier, over time, 

the performance of a system will decrease due to the continuous change in the spam statistical 

features and this is known as the spam drift phenomenon. Therefore, finding a resilient system that 

is able to detect spam over time is important. In the next chapter, we will explain in detail how to 

find the best techniques to build an effective, efficient and resilient system to detect spammers. 
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        CHAPTER 3 

METHODOLOGY 
 

The objective of this research is to find an efficient, effective and resilient model to identify 

spammers since they keep evading the existing systems, and it is hard to decide which one is the 

optimisation subset of features to identify spammers because none of the authors were doing any 

investigation for this. In the previous chapter, we reviewed how the existing techniques build a 

spammers’ detection system for Twitter in terms of content-based and user-based features, feature 

selection algorithms, number of recent tweets, classifiers and evaluation metrics. 

 

In order to achieve the objective of this research, we created three research questions as outlined 

in Section 1.3. The following sections show how we extract and implement each of the content-

based and user-based features, and the techniques that we have reviewed in Chapter 2. We then 

show how do we find the most effective features (RQ1), efficient model (RQ2) and resilient 

systems (RQ3) called ASDF (Anti Spam-Drift Collection of Features). To facilitate future 

researchers in this field and to answer the three research questions, we have created a novel tool 

called WEST (Workbench Evaluation Spammer detection system in Twitter). It not only allows 

the users to select from the existing 172 features, number of recent tweets, feature selection or 

classifiers to build their model, but it also allows users to specify new features, feature selection 

and classifier techniques. Besides that, the users can select certain dates of tweets for feature 

extraction and evaluate spam drift. 

 

The structure of this chapter is as follows. Section 3.1 shows how to use the WEST tool. Section 

3.2 outlines the dataset, the XML tags that we use in this research, and how to prepare the training 

and test set. Section 3.3 explains how to extract the collected features. Section 3.4 presents the 

hardware and software have been used for this research. Section 3.5 explains on how we find the 

ASDF model. Section 3.6 demonstrates the comparison between ASDF model and existing 

models. Section 3.7 discusses the ASDF model against spam drift problem. Finally, the summary 

of this chapter is discussed in Section 3.8. 

3.1 How to use WEST tool 
 

Presently, no one has done comprehensive, objective comparative studies of all the existing 

spammer detection systems. To enable people to easily evaluate two or more spammer detection 

systems against all the common evaluation metrics and investigate how well those systems handle 

the spam drift problem, we have created a novel tool called WEST. It contains all the required 

functions to create a spammer detection system such as feature extraction, feature selection, and 

classification. WEST is written in Java language based on Netbeans platform and uses a collection 

of algorithms that were imported from WEKA package. Because it is open-source, researchers can 

extend WEST to include more algorithms or features. In this section, we will show how we can 

use the program’s user interface to prepare the data, set up the features and generate the 

classification results. This software can be downloaded from 

https://github.com/kenny6789/WEST. 
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Figure 4 - WEST flowchart 

 

Once, the users download and install the program, there is a screen as shown in Figure 5. By 

clicking on the Start button, it will navigate them to the main interface of the program, which has 

four main tabs: Dataset, Feature Extraction, Feature Selection, and Classification, as shown in 

Figure 6. This is our very first version, and in the future we will expand our program with more 

functionalities. Therefore in Figure 5 we have many lot of free spaces with the Start button in the 

middle because in the future we will fill these spaces with other functionalities. 

 

 

Figure 5 - Click on start button to launch the program 

As shown in Figure 6 below, the Dataset tab contains three sections: File Import, Number of 

Recent Tweets and Extraction Date. In the File Import section, the users must provide data for 

"Dataset" and "Spam Profile Users". 
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Figure 6 - Main interface of the program 

The Dataset must be in XML format, as shown in Figure 7 below. In this XML file, it contains all 

tags required for feature extraction. Hence, it is important to make sure a new dataset must contain 

<screen_name>, <followers_count>, <friends_count>, <description>, <tweet_count>, 

<retweeted>, <text>, and <create_at> tags. 

 

 

Figure 7 - XML file format 

If users would like to extract features that require information from additional knowledge bases, 

such as spam words as shown in Figure 8 or entity names, users must import all of this information 

in CSV file format, one CSV file per knowledge base. For example, the spam users requires a CSV 

file, as shown in Figure 9 containing the list of spammer's profile in the dataset. 
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Figure 8 - Spamword list in CSV file 

 

Figure 9 - List of spam profiles stored in a CSV file 

The rest of the buttons in the File Import are optional. It depends on the features that would be 

selected by users. For example, if a user would like to extract "Number of spamwords", then the 

user must provide a list of spamwords by clicking on the "Spamwords" button. Below is the 

meaning for the rest of the buttons: 

 Places: List of name of the places in the world. 

 Name: List of person name in English 

 Dictionary: List of  valid words in English dictionary 

 Social Media Domain: List of social media domain 

 Organization: List of organisations or companies 

 Spamwords: List of spamwords from social media 

While reading the literature review, we found that the researchers were using a different number 

of recent tweets. Therefore, we have created several options for the users to choose from. In this 

section, the users could choose the desired number of recent tweets: 200 recent tweets, 150 recent 

tweets, 100 recent tweets, 50 recent tweets, and 20 recent tweets and by default WEST will start 

at 20 recent tweets.  

 

Furthermore, we also created a filter to let the users select tweets in a certain date range. This filter 

will take all the tweets in the specified range for feature extraction. The purpose of this function is 
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to allow users to test their spam drift; for example, if the dataset contains tweets from 2012 to 

2014, the users could extract all the tweets in 2012 and 2013 for training and testing their model 

and assuming they found a good model, then they could test their model again on the tweets in 

2014 to find out if their model is performing well against spam drift or not. It is important to make 

sure that the dataset have tweets in the specified range as otherwise there will be no tweets 

extracted from the dataset. The users must click on the Save button to save all the settings for the 

Dataset tab.  

 

Once, the preparation is done, the users could select content-based and user-based features that 

they want to extract from the Feature Extraction tab. In Figure 10, we have provided 10 systems 

for the users, and each of those system is already specified with features based on their literature. 

For example, if the users choose system 2, and clicked on "Apply" button, the content-based and 

user-based features that are specified for that system will be automatically selected, as shown 

below. The existing systems which have been implemented in WEST are [1], [10], [44], [6], [15], 

[40], [43], [7], [11], and [14], and because the authors did not have the name for their systems, 

therefore, we just called them System 1 to System 10, respectively as shown in Figure 8. 

Also, we have a "New System" option that allows users to create their own subset of features, by 

default this option will select all the content-based and user-based features. Please note that, all 

the extracted features will be saved in arff file format as shown in Figure 13. 

 
 
Figure 10 - Feature extraction tab 

Because some of the user-based features are derived from content-based, therefore, it is necessary 

to make sure that we must select the right derivation for that user-based feature. In Figure 11, I 

have selected "Maximum number of hashtags", and the message showed that we have to select 
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"Number of Hashtags" to extract "Maximum number of hashtags". In case the users do not want 

to include "Number of Hashtags" in their arff file, they could untick the box from the "Save the 

features" column in Content-based features. This means that “Number of Hashtags” will be 

extracted from the dataset but its value will be discarded after it has been used to calculate the 

“Maximum number of hashtags”. “Number of Hashtags” will not be included as one of the 

attributes is in the arff file. Once they have selected the set of features that they would like to 

extract from the dataset, they could click on the "Save button" to save all the settings in this 

process. 

 

 

Figure 11 - Maximum number of hashtag features is derived from the number of hashtags 

Once the user clicked on the “Extract button”, the system will ask for the location to save the three 

arff files that contains the extracted content-based only, user-based only and combination (content-

based and user-based) features respectively, as shown in Figure 12 below. In most of the cases, 

only the combination arff file will be used by the users, but we keep the content-based and user-

based features to enable users to check if any problems occur. 
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Figure 12 - Specify the paths for arff files 

Figure 13 presents an example of the output arff file produced after the “Feature Extraction” 

process. It contains the heading, the attribute names and datatypes, and the data. The heading 

contains the name of the system that we have selected from "Feature Extraction" process. The 

attribute contains the name of the features that were selected before, and the data type for that 

feature. Lastly, the information or features that are extracted from the XML files are converted 

into a meaningful format under the @data tag for the classifier's algorithms. Each of the lines of 

information is assigned with a class which is ham or spam. 

 

 

Figure 13 - Arff file format 

Figure 14 shows the feature selection tab. When the users would like to find out what are the 

optimisation subset of features from the extracted features in Feature Selection step, they could 

use this function to find it. To use this function, WEST requires an arff file (shown in Figure 13), 

and the user needs to choose a feature selection algorithm then click on the "Apply button" to find 

the optimisation subset of features. In Figure 14, we showed an example of the returning list of 

attribute ranking based on their information gain values. Please note that, this step is optional, and 

only suitable to be used when we have many features. 
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Figure 14 - Feature selection tab used to find the optimisation subset of features 

The classification tab is used to evaluate the spammer detection systems based on the provided 

training and testing arff files. As shown in Figure 15, there is a button called "Load arff Files", and 

this is where the users import their training and testing arff files. WEST will recognise the training 

and testing set based on its name. Thus, we must have the word "Training" and "Testing" in the 

names of the training and testing files respectively. For example, TrainingToFindSpammers.arff 

for the training set and TestingToFindSpammers.arff for the test set.   

 

After loading the arff files, users have to select a classifier algorithm. In Figure 15, Random Forest 

classifier is selected. Then, the users could choose one, two or all the evaluation metrics and click 

on the "Apply button" and the results will display below the Classification Results section, as 

shown in Figure 15. 

 

 

Figure 15 - TP result of CFS-100RT subset of features based on Random Forest classifier. 

3.2 Dataset 
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For this research, we will use the dataset from [11] for training and finding a collection of effective 

and efficient subset of features, while [39] are used to test the model for RQ3, because these are 

the only dataset we have found that contains the tweets and user profiles in their raw original 

format. It allows us to extract all the features from Tables 1, 2 and 3. Other datasets, such as [7], 

only have the extracted values for each feature they use; therefore, we could not use them.  

 

The dataset [11] has 7,549 profiles, already separated into spam profiles (315 profiles) and 

validated profiles (7,234 profiles). There is still some additional information required by some of 

the features listed in Tables 1 and 2 that was not available on the dataset, such as Age of Account 

and Bi-Directional Links. To acquire this information, we use Twitter4J [62] to get the data from 

Twitter based on the <screen_name> or <id> tags of each user in the dataset. Because some of the 

profiles in the dataset did not have that information or they were simply not available on Twitter 

anymore, we had to remove them from the dataset. Thus, we are left with 1,729 profiles (315 spam 

and 1414 ham).  

 

We choose the dataset [39] for testing spam drift because this dataset has the latest tweets in 2015, 

while [11] is containing tweets from 2012 to 2013. Tweets in dataset [39] are available in raw data 

format, which means we can do the feature extraction process, and it contains around 4800 ham 

and 6700 spam profiles. 

 

We splitted the [11] dataset into a training set and a test set. The training set contains 70% of the 

validated and spam profiles, and the test set involves 30% of the rest of the validated and spam 

profiles. We chose 70% for the training and 30% for the test set because this is often used by many 

researchers [63]. We used the whole [39] dataset as our second test set for evaluating how well the 

systems at handling the spam drift phenomenon. 

 

The dataset [11] is in XML format, and the information is separated into different XML tags, as 

shown in Figure 16. However, the dataset [39] is in CSV format, because WEST can only accept 

XML format, we have converted the dataset in XML format. Each node contains several tags, such 

as <text>, <created_at>, <retweeted> or <in_reply_to_screen_name> and those tags are used to 

obtain the content-based features, while other tags will be used for user-based features, such as 

<followers_count>, or <statuses_count>. For example, to find Number of characters content-

based feature, we must first extract the string "Missed the bus at one stop picked it up two avenues 

later. I can be a very fast walker" from <text> tag then calculate the number of characters in that 

string. For a user-based feature like Number of Followers, it can usually be extracted directly from 

reading the appropriate tag like <followers_count> tag. Common features such as #hashtag, 

@mention and URLs are extracted from <text> tag. 

 

In this research, we used data extracted from some XML tags mentioned in Section 3.4.1 and 3.4.2 

below. However, we only do the cleaning process for the <text> tag because this is the main tag 

containing many text characters, while the other tags just contain a small amount of characters 

with relatively very clean text. For example, we will convert "Let#39;s work a poco??" to "Let's 

work a poco??" by replacing "#39;" to a single quote. For the [39] dataset, we do not need to 

perform the cleaning process because this dataset is already cleaned by the author. 
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Figure 16 - All the XML tags from a user's profile 

3.3 How to Extract the features 
 

As mentioned in Section 2, there are two types of features, content-based and user-based, and those 

features will be extracted from the dataset mentioned in Section 3.2. However, because some of 

the user-based features are derived from content-based features, it is therefore necessary to extract 

the content-based features before the user-based ones. The following sections explain how to 

extract all the features mentioned in Tables 1, 2 and 3. 

 

In this research, we will extract all the collected features from the various authors mentioned in 

Section 2 by ourselves. Because some authors do not have the code to their systems available, we 

have extracted the features based on what was written in their paper but we cannot be 100% certain 

that what is implemented in WEST exactly matches the author's actual implementation. Below, it 

demonstrates how each content-based and user-based feature is extracted from the dataset. 

3.3.1 Content-Based features 
 

As mentioned in Section 3.1, the<text>, <retweeted> and <created_at> tags are used to extract the 

content-based features. In this research, we used six CSV files "Name" [64] "Cities" [65], 

"Organization" [66], "Social media domain"[67], "Dictionary" [68], and "Spam words" [69] as 

our knowledge base files. The "name" CSV file contains 5,494 names. The "cities" CSV file 

contains 86 of the largest cities in the world. The "organization" CSV file contains 2000 
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organisation names in the world. The "social media domain" contains 141 social media websites. 

The "dictionary" is an English dictionary containing 47,161 words. Finally, "spam words" contains 

723 bad words blacklisted on Facebook. We will use those CSV files to extract Tweets containing 

Places, Tweets containing oganizations, or Percentage of words not found in the dictionary. Next, 

we will explain how WEST extracts the features mentioned in Table 1. 

 Common features 

 

The feature Number of URLs (content-based number 1) is extracted by checking if a tweet contains 

"http" and "www" or not; if there is a "http" or "www" in a tweet then the Number of URLs is 

increased by one; for example, "@MoniqueFrugier Hi I supposed that you'd be pleased with this. 

Good luck http://wpnewsreport.com/googlenews/?=mtiy" and the number of URLs for this 

example is 1. 

 

For Number of URLs per word (content-based number 2), we did the same step as Number of 

URLs, but we also counted the total number of words in a tweet, then took the Number of URLs 

divided by the total number of words. For example, "Disasters call federal honours into question 

http://t.co/earCf76", and this string has six words and one URL so the number of URLs per word 

is 0.16 (we do not count a URL as a word). These steps were applied to the Number of Mentions 

(content-based number 7), Number of Mentions per word (content-based number 8), Number of 

Hashtags (content-based number 4), and Number of Hashtags per word (content-based number 6). 

 

Whether the links point to a social media domain (content-based number 3) is extracted by using 

the split() method to get the URL part from a text. Then this link was checked against the "social 

media domain" CSV file. If the extracted link contains any social media name in the CSV file, it 

is considered as pointing to a social media domain. For example, in "Pay special attention at 2:54 

http://www.youtube.com/watch?v=yAQoLZKfYXc", this tweet navigates to YouTube, which is a 

social media domain. 

 Special Characters 

 

Special characters include exclamation marks, question marks, ampersand, at sign, or dollar sign. 

However, for this project, only exclamation marks and question marks were considered as special 

characters because [15] only extracted those features; thus, we did not attempt to extract other 

special characters.  

 

To find the number of question marks (content-based number 10) from a tweet, we checked every 

character from a tweet and counted the number of question marks in that tweet. For example, in 

"@dvarimbealma ????=?????", there are nine question marks and it is applied to find the number 

of exclamation marks (content-based number 9) as well. 
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 Retweet 

 

In Twitter, retweet is defined as "RT @username". To find Number of Retweet (content-based 

number 13), we broke a string into a substring, then we checked if the string started with "RT", 

and we did not care about how many "RT" were in a tweet because we counted it as one "RT". For 

example, in "RT @Leslie_Lou109: RT @parker_story: I can't write papers unless they're due in a 

matter of hours", this string has one retweet. 

 

Another feature similar to Number of Retweet is Whether the tweet is retweeted (content-based 

number 12). In the XML file, there is a tag called <retweeted> and this tag contains a Boolean 

value. If the return value is true, then it is a retweet, otherwise it is not a retweet. However, our 

training and testing sets are in numeric format; therefore, we converted the return value to a 

numerical value, for example, false is 0 and true is 1. 

 Numeric 

 

To find numeric characters (content-based number 11), we broke a string into a substring then we 

checked every character to find the numeric characters. In this research, we did not count tens or 

hundreds because the name of this feature is numeric characters and the author who proposed this 

feature did not explain well whether to count a whole number or just count a numeric character. 

Therefore, we decided just to count the number of numeric characters. For example, "...what was 

supposed to be a 30 minute drive to work took nearly 2 hours. #ihatetraffic", so this string contains 

three numeric characters. 

 Tweets/Words 

 

To find Number of words (content-based number 26), we used StringTokenizer class and set the 

delimiter as whitespace to break a string into tokens. Then we counted the total number of words 

from the token. For example, "sorry couldn't help it", contains four words. 

 

To find Number of Spam Words Per Word (content-based number 28), we broke a string into 

tokens then checked every word in the token against the "spam words" CSV file to get the total 

number of spam words. After that, we took the number of spam words divided by the Number of 

Words to get Number of Spam Words Per Word. For example, in "...work is stupid slow. gonna be 

another long day", the word "stupid" is a spam word, so number of words is nine and total number 

of spam words is one. Number of Spam Words Per Word is 1/9. 

 

To extract Number of consecutive words (content-based number 15) feature, in our system we 

considered a consecutive word as containing two words that are all alphabetical characters, except 

for two cases like the pronoun "I" or article "A", which we still consider as a word. For example, 

in "have you any idea why a raven is like a writing desk?", "have you" is one consecutive word 

and "you any" is another consecutive word and so on. 

 

To find Number of characters (content-based number 16), we looped through a text and counted 

the number of characters in that text, and we did not count a whitespace as a character because 

[15] used the whitespace as a feature to count to find out how many whitespaces were on a tweet. 
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For example, in "I wish I could make a bomb that would kill every snake in the world", this string 

contains 53 characters. 

 

To find Number of whitespaces (content-based number 17), we looped through a text and checked 

every character, to see if it was a space, then we considered it a white space. For example, in "I 

wish I could make a bomb that would kill every snake in the world", this string contains 14 white 

spaces. 

 

To find Number of Capitalization words (content-based number 18) and Capitalization words per 

word (content-based number 19), we used StringTokenizer to break a text into tokens then checked 

every word in the token to see if the first character was a capital or not. After that, we counted the 

total number of words in the token then took the number of capitalised words divided by the total 

number of words to get Capitalization words per word. For example, in "I hate my Blackberry", 

the Number of Capitalization words is two, and the total number of words is four so Capitalization 

words per word is 0.5. 

 

To find duplicated tweets (content-based number 20), we applied the Min Distance algorithm, 

which is a way of quantifying how similar two strings are by counting the minimum number of 

operations required to transform one string into the other [70]. We created a minDistance() method 

based on the algorithm, which takes two parameters (text1 and, text2). If a return value is 0, it is 

absolutely duplicate and 1 or greater than 1 means two texts are different. 

 

To find Percentage of words not found in dictionary (content-based number 21), we used the 

downloaded Dictionary [68] with 47,161 words. Then we used HashMap to store the words in the 

dictionary and check every word from a text against this HashMap. If a word does not exist in the 

HashMap we considered it not found in the dictionary. The formula took the number of words not 

found in dictionary divided by total number of words then multiplied by 100. 

 

For example, in "...work is stupid slow. gonna be another long day", the word "gonna" is not in 

the dictionary, so the number of words not found in dictionary is one and the total number of words 

is nine, so the percentage of words not found in dictionary is (1 / 9) * 100. 

 

To find Tweets contain Social Media Domain, we used the "socialmediadomain" CSV file and 

checked if a tweet contains any social media domain. For example, in "Pay special attention at 

2:54 http://www.youtube.com/watch?v=yAQoLZKfYXc", this tweet contains one social media 

domain which is Youtube.com. This also applied to Tweets contain Places (content-based number 

22), Tweets contain Organization (content-based number 23) and Tweets contain Names (content-

based number 24). 

 

To find Time of Publication (content-based number 29), we used the information from 

<created_at> tag in XML file and the format of this tag was “Sat Apr 21 03:47:18 +0000 2012”. 

Then, we removed the date, month, year, minutes, seconds, and just kept the hour so after the 

removal, the data would be “03”. For this feature, we only kept the hour, because we did not really 

care about the exact time and also [42] did not explain this feature well. 
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3.3.2 User-based features 
 

Most of the user-based features are based on the content-based features, for example, to extract 

Maximum number of #hashtag per tweet we have to get the number of #hashtag. Additionally, 

there are some user-based features that do not need content-based, such as Length of profile name, 

Number of follower, and Number of followee. 

 

In this research, we studied 145 user-based features and created several methods to extract those 

features, for example, getAverageNumber() can find the average number of #hashtag, @mention, 

or URL by passing the required data, and Table 7 shows the functions used to extract all the user-

based features from Table 2.  

Table 7 - Function name and feature number 

Function Name Feature Number 

Max, Min, Median, Average, Standard Deviation 

1.1 getAverageNumber() 9, 18, 28, 51, 55, and 145 

1.2 getMaxNumber() 10, 19, 25, 30 , 44, 49, 53, 59, 64, 68, 104, 109, 114, 119, 124, 129, 134, 138, and 142. 

1.3 getMaxNoXPerWord() 11, 31 

1.4 getMinNumber() 12, 20, 26, 32, 45, 50, 54, 105, 110, 115, 120, 125, 130, 135, 139, and 143. 

1.5 getMinNoXPerWord()  

1.6 getMedianNumber() 14, 15, 21, 27, 34, 36, 47, 52, 56, 106, 111, 116, 121, 126, 131, 136, and 141. 

1.7 getMedianNoXPerWord() 13, 33 

1.8  getStandardDeviation() 48 

User Profile 

1.1 Number of spamword on screenname 39 

1.2 Length of profile name 41 

1.3 Ratio follower to following 4 

1.4 Length of description 60 

1.5 Number of tweets 61 

1.6 Age of account 5 

1.7 Bi-directional Links 6 

1.8 Fraction of mention to non follower 8 

Time 

1.1 getTimeBetweenTweets() 44, 45, 46, 47, and 48. 

1.2 Number of tweets in early morning 43 

1.3 Distribution of 24-hours (in 0-23) From 70 to 93 

1.4 Distribution of 24-hours (in 8 sets) From 94 to 101 

1.5 Number of tweets posted on Mon – Sun 103, 108, 113, 118, 123, 128, and 133 

1.6 getMaxMinAvgMedDay() 104-107,109-112,114-117,119-122,124-127, 129-132 and134-137 

1.7 getMaxMinAvgMedWeek() 142, 143, 144, and 145 

1.8 Average time between posts 63 

1.9 Max idle duration between posts 64 

Tweets 

1.1 Number of unique duplicated tweets 57 

1.2 Average tweet length 62 

1.3 Average spam tweet count 42 

1.4 Tweet similarity - tweet cluster 65 

1.5 Tweet similarity - Cosine Similarity 66 

Retweet 

1.1 Average retweets per tweet 23 

1.2 Interaction rate 7 

1.3 maxNoofTweetRetweeted 25 

1.4 minNoofTweetRetweeted 26 

1.5 medianNoofTweetRetweeted 27 

URL, @Mentions,  #Hashtag 

1.1 Average URL count 28 

1.2 URL ratio  38 

1.3 Ratio Unique URLs 37 

1.4 Average Hashtag count 9 
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1.5 Hashtag ratio 17 

1.6 Fraction of #hashtag, @mention, and URL 16, 22, and 35 

1.7 Total number of users mentioned 24 

 

1) getAverageNumber(total#PerTweet ,totalTweetsContain# ) 
 

This method takes two parameters, the total number of #hashtags from every tweet 

(total#PerTweet) and the total number of tweets containing #hashtag (totalTweetsContain#). The 

total#PerTweet is the total number of hashtags from all tweets, and the totalTweetsContain# is the 

total number of tweets containing hashtags. We do not count any tweets that do not contain 

hashtags. 

 

Average number of #hashtag = total#PerTweet / totalTweetsContain# 

The example below illustrates how to find total#PerTweet and totalTweetsContain# 

tweet-1: Just broke into my own house. #brokenwrist #whoneedsalocksmith 

tweet-2: #Bestsong of all time #forever http://t.co/ORTab1W0 #Whitney 

tweet-3: Bought a new kitchen today 

 

So the total#PerTweet is five, because tweet-1 contains two #hashtags and tweet-2 contains three 

#hashtags and the totalTweetsContain# is two because only tweet-1 and tweet-2 contain hashtags. 

The average number of #hashtag = 5 / 2. 

 

2) getMaxNumber(arraylist#hashtag) 

 

This method takes one parameter which is an arraylist. For example, we put all the numbers of 

#hashtag from every tweet to an arraylist arraylist#hashtag. To get the maximum number from the 

arraylist, we use the Collections.max(arraylist#hashtag) method, and this returns the maximum 

element of the given collection. 

 

For example: 

Tweet Number  Number of Hashtag  

1  6  

2  8  

3  9  

 

So the arraylist holds {6,8,9}, and the maximum value is 9. 

 

3) getMaxNoXPerWord(arraylist#hashtagperword) 

 

The term of “X” could be #hashtag, @mention, or URL. For example, to extract Maximum number 

of #hashtag per word, we have to extract the number of #hashtag per word feature first. After that, 

we insert all the numbers of #hashtag per word to the arraylist. To get the maximum number of 

#hashtag per word, we use the Collections.max(arraylist#hashtagperword) method to return the 

maximum element of the given array. 
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For example: 

Tweet Number  NoOfHashtagPerWord  

1  6  

2  6  

3  8  

 

So the arraylist holds [6,6,8], and the maximum value is 8. 

 

4) getMinNumber() 
 

This method requires an arraylist parameter. Instead of using Collections.max(), we used 

Collections.min() to get the minimum element from the arraylist. 

 

5) getMinNoXPerWord() 

 

Similar to getMaxNoXPerWord() method, the getMinNoXPerWord() finds the minimum value. 

 

6) getMedianNumber() 

 

For example, to find a median number of #hashtag of a user, we added all the number of #hashtags 

to an array then sorted it in order. The median number of#hashtag is the value located in the middle 

of the array. 

 

For example: 

Tweet Number  NumberOfHashtag  

1  6  

2  9  

3  8  

4  2  

5  7  

 

After inserting and sorting all the number of #hashtag, the arraylist becomes {2, 6, 7, 8, 9} and the 

median value is 7. 

 

7) getMedianNoXPerWord() 

 

Similar to the getMaxNoXPerWord() method, the getMedianNoXPerWord() finds the median 

value. 

 

8) Fraction of #hashtag, @mention, and URL 

 

To find a fraction of #hashtag, we have to find the number of tweets containing #hashtag, and it is 

content-based features. After that, we divide the number of tweets contain #hashtag by the total 

number of tweets.  
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The fraction of @mention, URL, DuplicatedTweets and Spam tweets was extracted in the same 

way. However, this function is different to getAverageNumber() because Fraction of #hashtag 

and getAverageNumber() did not use the same values.  

 

Fraction of #hashtag = the number of tweets containing #hashtag / the total number of tweets. 

 

9)  getTimeBetweenTweets() 

 

This method checks the time between two tweets. The time of a tweet is extracted from 

<created_tag> tag. To find the time between two tweets, we took the time from tweet1, then 

subtracted the time of tweet2 and, for this research, the time between tweets is in minutes. 

 

For example: 

Tweet1: 

<text>@MustLoveCyrus i hope u dont mind my username lol </text> 

<created_at>Wed Jan 27 00:05:53 +0000 2010</created_at> 

 

Tweet2:   

<text>still selena but different pic</text> 

<created_at>Wed Jan 27 00:00:14 +0000 2010</created_at> 

 

The time between two tweets is five minutes. 

 

10) Number of spamwords in screen name 
 

This feature represents the total number of spam words that appear in the screen name. We got a 

user’s screen name from <screen_name> tag in the XML file then checked it against the list of 

spamwords in CSV format to find the number of spam words.  

 

For example, in "work is stupid slow. gonna be another long day", the word "stupid" is a spam 

word in spamwords CSV file, so this text contains one spam word. 

 

11) Length of profile name 

 

To get this feature, we used the screen name from <screen_name> tag then counted the number of 

characters in the string. For example, a screen name "Fox_McCloud_" has a length of 12 

characters. 

 

12) Number of tweets in early morning 

 

For this feature, we considered early morning as the time between 3:00am and 6:00am. To get this 

feature, we took the information from <created_at> tag and formatted it into “H:mm:ss”. After 

that, we created two ranges, 30,000 and 60,000. To extract this feature, we removed the icon “:” 
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from “H:mm:ss”, for example, “3:42:59”,  after the removal, becomes “34259”, then we checked 

if “34259” was in the range between 30,000 and 60,000. 

 

13) Number of unique duplicated tweets 

 

In this system, we defined “duplicated tweet” as two tweets that are exactly the same. 

To get this feature, we needed to use Hashset and Min-Distance algorithm. First, we checked a 

pair of texts with a min distance algorithm, and if it was absolutely duplicated, which is 0 distance, 

we added it into the hashset. Finally, we counted the total number of elements in Hashset to get 

the number of unique duplicated tweets.  

 

For example, we have three tweets as below: 

tweet1: I wish I could make a bomb that would kill every snake in the world 

tweet2: I wish I could make a bomb that would kill every snake in the world 

tweet3: Bought a new kitchen today 

 

The number of unique duplicated tweets is one because tweet1 and tweet2 are exactly the same. 

 

14) Distribution of 24-hours (in 0-23)  

 

To find the number of tweets posted from 0-23, we used the feature Time of publication. For 

example, to find the number of tweets posted at 3:00 am, we counted all the tweets that have a "3" 

value from Time of publication. 

 

For example:  

Tweet Number  Time of Publication  

1  3  

2  9  

3  6  

4  8  

5  3  

 

So the number of tweets posted at 3:00 is two, as tweet number 1 and number 5 were posted at 

3:00. 

 

15) Distribution of 24-hours (in 8 sets) 

 

We did the same step as “Distribution of 24-hours (in 0-23)” to get the hours. Instead of counting 

the tweets in a one-hour range as in Distribution of 24-hours (in 0-23), we divided 24 hours into  

eight sets; for example, the third set was from 6:00 to 8:00, then we counted the number of tweets 

posted in this range. 
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For example:  

Tweet Number  Time of Publication  

1  3  

2  9  

3  6  

4  8  

5  3  

 

So there were two tweets posted in the third set because tweet numbers 3 and 4 were posted at 6:00 

and 8:00. 

 

16) Fraction follower to following 

 

To get this feature, we took the number of followers and followees from the XML file. Then we 

took the number of followers divided by number of followees. 

FractionFollowerPerFollowee = number of followers / number of followees. 

 

17) Number of tweets posted on Mon – Sun 

 

For this feature, we used Monday as an example. In the XML file, we took the data from 

<created_at> and we had a string, “Mon Apr 21 00:58:44”. Then we removed everything from the 

string except “Mon”.  After that, we just counted the number of “Mon”. Also, this was applied to 

Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday. 

 

18) getMaxMinAvgMedDay() 

 

This function can be used to find the maximum, minimum, average and median number of tweets 

posted on Monday in different weeks.  

 

First, we started at the lastest tweet from a user and found the range of a week for that tweet. Then 

we counted the total number of tweets posted from Mon to Sun that week, and after that we kept 

the findings for other weeks and created a CSV file to save all of it. 

 

Figure 17 shows the number of tweets posted in two weeks by a user. Then we counted the number 

of tweets posted every week and created a CSV file to store it, as shown in Table 8. 

 

 

 Figure 17 - Number of tweets posted from Monday to Sunday in a week 
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To get the maximum number of tweets posted on Monday, we added the number of tweets posted 

on Monday of weeks 1 and 2, in Table 8, to an arraylist then passed the arraylist to the 

getMaxNumber() method to find the maximum value, so the maximum number of tweets posted 

on Monday was two.  

Table 8 - A created CSV file for storing number of tweets posted every week 

Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 2 0 1 1 1 1 1 

2 0 1 3 0 0 0 0 

 

To find the minimum, average and median number of tweets, we passed the arraylist to the 

getMinNumber(), getAverageNumber() and getMedianNumber() methods. 

 

19) getMaxMinAvgMedWeek() 

 

To get this feature, we used the CSV file mentioned in Table 8. Then we added up all the values 

from Mon to Sun per week and put the result in an arraylist. After that, we passed the arraylist to 

getMaxNumber() to get the maximum tweets posted in a week.  

 

For example, Table 8 has two weeks and the number of tweets posted on Monday to Sunday was 

2+0+1+1+1+1+1 = 7 tweets, and the second week was 0+1+3+0+0+0+0 = 4 tweets. Then we put 

four and seven to the arraylist and passed the arraylist to getMaxNumber() method, so the 

maximum number of tweets posted in one week was seven. 

 

To get minimum, average or median values, we changed the getMaxNumber() method to 

getMinNumber(), getAverageNumber() or getMedianNumber() methods. 

 

20) Length of description 

 

The Length of description can be extracted from the <description> tag in the XML file. We counted 

the total number of characters from this tag. In this research, we considered a whitespace as a 

character for this feature. For example, <description>Fun be Happy dance</description> has 18 

characters. 

 

21) Number of tweets 

 

To extract Number of tweets feature, we used <tweet_count> tag, for instance, 

<tweet_count>41</tweet_count> and this tag contains the total number of tweets posted by a user. 

 

22) Average retweet per tweet 

 

We have extracted the Number of retweets feature. To find Average retweet per tweet, we added 

all the Number of retweets to find the total number of retweets. After that, we divided the total 

number of retweets by the number of tweets to get the average retweet. 
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For example:  

Tweet-1:RT @Leslie_Lou109: RT @parker_story: I can't write papers unless they're due in a 

matter of hours. 

Tweet-2:RT @Dannymcfly: Happy national kiss day mwah. 

Tweet-3:goodbye hair. one day you'll be long again. 

Tweet-4: but you will be haha thats a lot of beer. 

 

The total number of retweets is three (tweet 1, tweet 2) and number of tweets is four. So the 

Average retweet per tweet = (2+1) / 4.  

 

23) Average tweet length 

 

First, we found the length of every tweet by counting the characters including the whitespaces. 

After that, we added all the lengths together to get the total length of all tweets. To find the average 

tweet length we took the total length from all tweets, divided by the total number of tweets. 

 

For example: 

Tweet-1: but you will be haha thats a lot of beer 

Tweet-2: goodbye hair. one day you'll be long again 

So the length of tweet-1 is 40 and tweet-2 is 43 

 

To find Average tweet length= (40 + 43) / 2 

 

24) Average time between posts 

 

To get this feature, we used the getTimeBetweenTweets() method to find the time between tweets 

then we stored it in an arraylist. Then we added up all the elements in the arraylist to get the total 

value, and we divided the total value by the total number of elements in the arraylist to get the 

result. 

 

For example: 

Tweet Number  Time between tweet  

1  0  

2  6  

3  8  

 

So the total value is 14 because the time between post of tweet 1 and 2 is 6, and tweet 2 and 3 is 

8. The average time between posts is 14 / 3. 

 

25) Max idle duration between posts 

 

We used the getTimeBetweenTweets() method to find the time between tweets then store it in an 

arraylist. After that, to get the maximum idle duration, we passed the arraylist to getMaxNumber() 

method to get the maximum value, which is the maximum idle duration. 
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For example: 

Tweet Number  Time between tweet  

1  0  

2  6  

3  8  

 

The max idle duration between post is 8. 

 

26) Average spam tweet count 

 

This feature requires a list of spamwords. First, we checked every tweet against the list of 

spamwords to find out how many spamwords are in a tweet. After that, we added all the spamwords 

from every tweet together and divided this by the total number of tweets to get the average. 

 

For example:  

The words "silly" and "stupid" are spam words in our CSV file. 

Tweet-1: twitter is playing silly devils... I keep having to re follow people... what's going on?? 

Tweet-2: work is stupid slow. gonna be another long day 

Tweet-3: Take a look at this video 

 

Thus, tweet 1 has one spamword, tweet 2 has one spamword, and tweet 3 has none; the total 

number of spamwords is two, and the total number of tweets is three.  

The Average spam tweet count = 2 / 3. 

 

27) Average URL count 

 

For this feature, we had to find the number of duplicated URLs, the number of unique URLs and 

the number of tweets to get the average URL.  

 

For example: 

Tweet-1: Why are so many vampire stories so weak? http://t.co/GDapgkv9 

Tweet-2: Ask me anything http://formspring.me/discoverhannahj 

Tweet-3: Ask me anything http://formspring.me/discoverhannahj 

Tweet-4: WOW @smosh has done it again http://www.youtube.com/watch?v=APV5LnQvqFw 

 

So the number of duplicated URLs is two (tweet-2 and tweet-3), the number of unique URLs is 

three and number of tweets is four. The Average URL count = 2 / (3 * 4) 

 

28) URL ratio 

  

To find URL ratio, we counted the total number of tweets contain URLs in the content-based. We 

found the Number of URLs feature for every tweet and if a tweet had one or more than one URLs 

then it was considered as containing a URL. After that, we took the total number of tweets 

containing URLs and divided it by Average URL count. 
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For example: 

Tweet-1: Would you follow Loki into battle? http://t.co/s4SLqVF2, http://t.co/nLk26pqZ 

Tweet-2: Why are so many vampire stories so weak? http://t.co/GDapgkv9 

 

So the number of tweets containing URLs is two, although tweet-1 has two URLs, but we do not 

care about the number of URLs in a tweet. 

The URL ratio = 2 / Average URL count 

  

29) Ratio Unique URLs 

 

To find ratio unique URLs, we had to count the total number of unique URLs using HashMap 

array. The ratio unique URLs = the number of unique URL / the number of tweets. 

For example: 

 

Tweet-1: A new week begins it's going to be awesome http://smsyo.sg 

Tweet-2: Papal Visit - takes me back http://www.youtube.com/watch?v=aKQZwlL5x80 

Tweet-3: Testing http://smsyo.sg 

 

The number of unique URLs is two (tweet-1 and tweet-3), so the ratio unique URLs = 2 / 3. 

 

30) Average Hashtag count 
 

This feature uses the same formula as Average URL count. However, to find the number of 

duplicated Hashtags, we broke a tweet into single words and used a regular expression to check if 

behind a hashtag symbol (#) contains at least one character, for example, "So bored #killmenow -

_-". 

 

31) Tweet similarity - tweet cluster 

 

Tweet cluster is a unique tweet, so the number of tweet clusters is the number of unique tweets 

from a user. Instead of using cosine similarity and min distance to find tweet similarity, [11] takes 

the number of tweets / number of tweet clusters. To find the number of tweet clusters, we used 

hashmap to store it, and the number of tweet clusters was the size of the hashmap. 

 

For example: 

Tweet-1: Love this song. http://t.co/ceb17pGU 

Tweet-2: So happy it's spring 

Tweet-3: Love this song. http://t.co/ceb17pGU 

Tweet-4: A palm tree in Christmas lights. 

 

The number of tweet clusters is three because tweet-1 and tweet-3 are duplicated so we counted 

them as one cluster. The number of tweets is four, so the tweet similarity = 4 / 3. 

 

  



62 

 

32) Hashtag ratio 

 

Same as URL ratio. 

 

33) Total number of users mentioned  
 

To get this feature, we extracted the user id in <in_reply_to_user_id> tag from every tweet, for 

example, <in_reply_to_user_id> 86565551 </in_reply_to_user_id> if the <in_reply_to_user_id> 

tag is not nil, then we counted it as one user mention. 

 

34) getStandardDeviation(arrylistTimeBetweenTweets)  
 

We created a getStandardDeviation() method. After that, we found the time between tweets by 

using the getTimeBetweenTweets() method, then added all the returned values to an arraylist and 

passed it to the getStandardDeviation(). This method returns a standard deviation time between 

tweets for a user. 

 

35) Age of account 

 

To find this feature, we used Twitter4j class and a function getCreatedAt() to get the date an 

account was created. Then we subtracted the date created from the current date. 

 

36) Bi-directional Links 

 

We used two functions isSourceFollowingTarget() and isSourceFollowedByTarget() from 

Twitter4j. Each function returned a Boolean value and to define a relationship between two users, 

each function had to return a "true" value.  

 

37) Tweet similarity - Cosine Similarity 

 

To extract this feature, we created a method called getTweetSimilarityCS() based on Cosine 

Similarity [35,[71] algorithm. Cosine Similarity between two vectors can be calculated based on 

the cosine of the angle between them. 

 

38) Interaction rate 

 

To find this feature, we took “Total number of users mentioned” divided by “number of tweets”. 

 

39) Fraction of mentions to non follower 
 

To get this feature, we had to find out the “number of mention to non follower”. A function called 

isSourceFollowedByTarget() is provided by Twitter4j API, and returns a Boolean value. If the 

returns value is false, it means the sender has no relationship to the receiver and in this case 

“number of mention to non follower” was increased by one. 
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The Fraction of mention to non follower = number of mention to non follower / number of tweets 

 

40) maxNoofTweetRetweeted 

 

This feature extracted information from <retweet_count> tag. After that, we added all the values 

from this tag to an arraylist and passed it to the getMaxNumber() method to find the maximum 

number of retweets. 

 

41) minNoofTweetRetweeted 
 

Similar to “maxNoofTweetRetweeted”, but instead of using getMaxNumber() method, we used 

getMinNumber() method to find the minimum number of retweets. 

 

42) medianNoofTweetRetweeted 
 

Similar to “maxNoofTweetRetweeted”, we used getMedianNumber() method to find the median 

number of retweets. 

3.4  Hardware and Software specification 
 

We have conducted our experiments on a PC equipped with Intel(R) Core(TM) i7-7700 CPU @ 

3.60Ghz (8 CPUs), and the PC is installed with 8GB memory and 250GB SSD, which statifies our 

required conditions for performing all the experiments in this research. Also, we were doing all 

the timing based on the Java SE 8 Date and Time. 

For all the testing techniques, such as ANOVA, T-Test and Equivalence testing, we will utilise the 

built-in functions in MS Excel. This will help us to save much time for all the calculations and also 

avoid all the mistakes of the calculations by hand. 

To build WEST tool, we will use Netbeans platforms and some libraries, such as openCSV 4.0, 

and Weka package. Especially, we will need many functions provided from the Weka package to 

perform all the feature selection and classification processes. 

3.5 Finding the best techniques to create the ASDF model 
 

The main components of a spammer detection system are subsets of features, the number of recent 

tweets and classifiers. In order to find the optimisation subset of features, we extracted 172 features 

for every different number of recent tweets from dataset [11] such as 20, 50, 100, 150, and 200. 

For every number of recent tweets, we applied the feature selection algorithms: InfoGain and 

CFSSubsetEval to find different subsets of features and train them with five classifiers: Naive 

Bayes (NB), K-nearest neighbour (IBK), Decision Tree (J48), Support Vector Machine (SMO), 

and Random Forest (RF) to get the results for all the evaluation metrics. 

 

First of all, we will find the optimisation number of recent tweets and the optimisation subset of 

features. For example, we will use ANOVA and T-Test (if required) to find the significance 
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difference between subsets of features (All features, Top 10, Top 20 and CFSSubsetEval) from 20 

recent tweets, then pick the highest performance by their maximum and minimum interval through 

Equivalence Testing and repeating these steps for the rest of the number of recent tweets. So, at 

the end, we will have one best subset of features for each number of recent tweets. 

 

We will use MS Excel to perform ANOVA, T-Test and Equivalence testing because this will help 

us to get the accurate results as our math can get messy and also it will be faster than doing all the 

calculating by hand. Also, in this research, we use only two-ways ANOVA without replication for 

all the testings. 

 

To find the optimisation subset of features overall, we will repeat the same steps as above on the 

optimisation subset of features from 20RT, 50RT, 100RT, 150RT, and 200RT. Once, we found 

the best one overall, we chose that subset of features and the number of recent tweets and 

considered it as the ASDF model, because we do not know how well it is coping with the spam 

drift problem. After that, we will look at the classifier's performance to select the best classifier 

for this model based on the True Positive (TP) rate. For each of those model, we did not perform 

any parameter tuning on each of the classifiers. We used the classifier’s default parameters settings 

. 

3.6 Compare the ASDF model against the existing systems 
 

Similar to finding the best techniques for the ASDF model, we repeated the same steps by using 

the ANOVA and T-Test (if required) to find the significant differences between the models. Then, 

we used Equivalence testing to find the best model based on their maximum and minimum interval. 

 

In this research, we used TP rate, Precision, Recall, F-Measure, and Accuracy to evaluate the 

performance of the ASDF model and the other existing systems at predicting spammers on the 

testing dataset from [11]. One of the objectives in this research is finding the most efficient system; 

therefore, we looked at the time (feature extraction, building the model, and to classify) criteria of 

the ASDF to find out how long it takes to identify spammers, compared to other systems. Again, 

only the default parameter values are used in each of the classifiers. 

3.7 Compare the ASDF model and the existing systems against Spam Drift 
 

We will investigate how well the ASDF model and the other existing systems at handling the spam 

drift issue through testing this model with the dataset from [37].  Because, spammers will change 

their strategy or their behaviour over  time to disguise themselves as a normal user, therefore 

testing with the latest tell us how good this model is against the spam drift problem. 

We used the ANOVA and T-Test (if required) to find the significant differences between the 

models. Then, we used Equivalence testing to find the best model based on their maximum and 

minimum interval. TP rate, Precision, Recall, F-Measure, and Accuracy will be used as evaluation 

criteria for evaluating the performance of the ASDF model and the other existing systems against 

the new dataset. Just as above, we were using the default parameter settings on each of the 

classifiers. 
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3.8 Summary 
 

This chapter describes how to implement all the current existing techniques mentioned in Chapter 

2 to identify spammers in Twitter. To achieve the goals in this research, we have proposed three 

research questions: find the most effective features (RQ1); the most efficient model (RQ2) and the 

resilient model against spam drift (RQ3). After answering the research questions 1 and 2, we can 

create a ASDF model. To know whether it is a resilient model, which is our research question 3, 

we tested it against tweets from more recent dataset.We then compared ASDF performance against 

the existing spammer detection systems. 

 

Also, we explained how to use the WEST tool for feature extraction, feature selection, and 

classification. We showed how to extract all the features from Tables 1, 2, and 3, in terms of future 

researchers who would like to review those features. 

 

In the next chapter, we will show the experimental results for all the research questions and the 

final ASDF model. Also, we will show the experiment results for comparison between the ASDF 

model and the existing systems.  
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        CHAPTER 4  

RESULTS AND DISCUSSION  
 

The previous chapters explained existing techniques to detect spammers in Twitter and how to 

utilise the WEST tool to implement the current techniques, such as feature extraction, feature 

selection, number of recent tweets and classifiers. In this chapter, we present the experimental 

results on the comprehensive investigative studies of the current techniques to find an efficient, 

effective, and resilient model to tackle the spam drift problem.  

 

To accomplish our investigation, we have done many experiments for finding the most effective 

features (RQ1), and the most efficient model (RQ2) to create a ASDF model. Finally, we show the 

experimental results of the ASDF model tackling the spam drift problem (RQ3). 

 

This chapter is structured as follows. In Section 4.1, we show the experiment results for finding 

the most effective subset of features (RQ1), and the efficient model to create the ASDF model 

(RQ2). Then, the comparison and the results for the ASDF model against the existing systems are 

discussed in Section 4.2. The best model to identify spammer against spam drift is demonstrated 

in Section 4.3. Finally, the summary of this chapter is presented in Section 4.4. 

4.1 The experimental results for finding the ASDF 
 

As mentioned in Section 3.4, to determine the best set of features for identifying spammers (RQ2), 

we performed eight different feature selection techniques: Top 1, Top 5, Top 10, Top 20, Top 50, 

Top 100 and CFSSubsetEval. Top-N attributes are ranked and selected based on their Information 

Gain value. We then compared the TP rate values produced by this subset of features against the 

TP rate values produced by including all the features (i.e. not applying any feature selection 

techniques) when they are classified with NB, SVM, KNN, DT and RF. 

 

Many researchers have extracted features from differing numbers of recent tweets. To see whether 

the number of recent tweets used affects the performance of the spammer detection system, we 

have performed feature selection and classification of 20, 50, 100, 150 and 200 recent tweets. This 

section discusses the result with each of those numbers in relation to our research questions. 

 

We performed the ANOVA technique and T-Test to find whether there is a significant difference 

between the results obtained by each technique. To determine which technique is the best, we used 

the Equivalence Testing where we compare the maximum (Average + Standard Deviation) and 

minimum (Average – Standard Deviation) interval for every systems. 
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4.1.1 - 20 Recent tweets 
 

Table 9 shows the TP rate result for spammers between the different subset of features from the 

20 recent tweets (20RT). According to the ANOVA results, there was a significant difference in 

the 95% confidence level between the nine subsets of features (P-value = 0.0175). Thus, we used 

the T-Test to find the difference between every two subsets of features. As shown in Table 48 

(Appendix), "All Features" and "Top 1" was significantly different (P-value = 0.0025), while the 

other subsets of features were not significantly different to each other. We then used Equivalence 

Testing to obtain the optimisation subset of features. Based on the results, the top three subsets 

were: "Top 10" (AVG 60% ± 35%), "Top 20" (AVG 55% ± 26%) and "CFS-20RT" (AVG 55% ± 

30%). “Top 10” produced the highest TP rate with 93% and its minimum (25%) interval is not 

much lower than “Top 20” (29%). Thus, we chose the "Top 10" as the optimisation subset of 

features,  

Table 9 - Results for all subset of features in 20 recent tweets 

 
All  

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

20RT 

NB 67% 0% 93% 93% 70% 80% 66% 67% 42% 

SMO 37% 0% 0% 0% 45% 13% 26% 42% 80% 

IBK 42% 26% 22% 69% 24% 48% 41% 42% 67% 

J48 51% 22% 43% 67% 43% 75% 59% 71% 79% 

RF 40% 30% 22% 71% 33% 61% 42% 42% 79% 

 

Table 10 shows the "Top 10" subsets of features for 20RT and those features were selected based 

on the amount of information they contributed to the class target. The numbers next to each feature 

indicates their information gain values. One of the "Top 10" features was Fraction of follower per 

followee that used the number of followers and followees to determine spammers in Twitter. 

However, [4] said we should avoid using the Number of follower and Number of followee as it 

could be evaded by spammers. The Bi-Directional Link ratio or Interaction Rate would be a much 

better indicator because spammers need to either purchase more followers and followees or have 

a high level of two-way interactions with the users to avoid being detected by the system. However, 

surprisingly, those two features were not selected in the "Top 10" subset of features for 20RT. 

Upon further investigation, we found that the value of the Interaction Rate or Bi-Directional Link 

ratio in our dataset is 0thus those features were not a good indicator for spammers.  

 
Table 10 - Top 10 subset of features for 20 recent tweets 

 

Top 10 subset of features for 20 recent tweets 

Max idle duration between posts (0.458) Maximum amount of time between tweets (0.438) 

Mean amount of time between tweets (0.455) Mean word length (0.431) 

Average time between posts (0.455) Age of account (0.422) 

Standard deviation tweet interval (0.45) Fraction of follower per followee (0.422) 

Tweet similarity - cosine similarity (0.44) Average number of characters (0.395) 



68 

 

 

It can be seen that there are five time-related features in Table 10. Those features measure the 

user's behaviour when sending the tweets and we strongly agree with having those features in the 

optimisation subset of features for 20RT because, according to[1], spammers tend to have more 

posts than normal users over a period of time, and they cannot be idle for a long time. As shown 

in Figure 18, we also see this behaviour in our dataset.  

 

 
 
Figure 18 - Time between tweets 

 

Table 11 shows the "CFS-20RT" subset of features for 20RT. Most of the features here could 

describe the spammer behaviour. For example, in our research, we found that out of 1662 spam 

tweets, 65 tweets contained exclamation marks and carried up to 4% of the total spam tweets, 

while only seven tweets contained exclamation marks in over 14,720 total ham tweets. So, this 

feature could help to identify spammers in Twitter. However, the time-relation features, such as 

Tweets posted at 21:00 pm and Thirdset (tweets posted from 6:00 am - 8:00 am) could be evaded 

by spammers as they could change to another posting time for spreading the tweets. [7] found that 

39% of spammers had spamwords in their tweets, whereas legitimate users did not post more than 

4% of their tweets containing spamwords. In our research, spammers posted 36% of spamwords 

in their tweets, while the legitimate users only had 12%. So it can be seen that spammers tended 

to post a higher percentage of spamwords than legitimate users, therefore checking the spamwords 

could increase the performance and better describe spammers’ and legitimate users’ behaviour. 

 
Table 11 - CFSSubsetEval subset of features 

 
CFSSubsetEval subset of features for 20RT 

Number of Exclamation marks URL ratio 

Number of spamwords Hashtag ratio 

Number of spamwords on screenname Median number of tweets retweeted 

Tweets posted at 21:00 pm  Age of account 

Thirdset  Average time between posts 

 

Although the "CFS-20RT" subset of features describes spammers behaviour well, most of the 

features used contextual information from the tweets to identify spammers and we believe that 

20RT did not give enough information for building the spammer detection system, because 20RT 

is a small number of recent tweets compared to others such as 100RT and 200RT, so it did not 

contain much information for training and testing the system. "Top 10" subset of features focused 

on spammers’ behaviour and did not use much contextual information, for example, and most of 

the features from "Top 10" were time-relation features which were extracted by calculating the 

time between them; however, the URL ratio or Hashtag ratio required the contextual information 

to extract. Therefore, the "Top 10" subset of features performed better than the "CFS-20RT" in 

20RT. 
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4.1.2 - 50 Recent tweets 
 

Table 12 shows the TP rate result for spammers between the different subsets of features from the 

50 recent tweets (50RT). According to the ANOVA results, there was no significant difference in 

the 95% confidence level between the nine subsets of features (P-value = 0.0511). The results of 

the Equivalence Testing showed that "Top 10" (AVG 56% ± 33%), "CFS-50RT" (AVG 56% ± 

27%) and "Top 20" (AVG 49% ± 21%) were the top three subsets of features in 50RT. Although 

it appears that "CFS-50RT" has a lower variance than the "Top 10", “Top 10” produced lower 

variance than “CFS-50RT” if we removed the results from SMO and “Top 10” achieved 92% with 

NB, that was the highest result throughout the classifiers from the other subsets of features. Thus, 

“Top 10” is the optimisation subset of features in 50RT. 

Table 12 - Results for all subset of features in 50 recent tweets 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

50RT 

NB 66% 0% 97% 92% 66% 66% 58% 75% 30% 

SMO 44% 0% 0% 0% 50% 15% 37% 45% 22% 

IBK 24% 22% 20% 62% 24% 42% 34% 38% 68% 

J48 43% 26% 20% 61% 43% 67% 52% 48% 80% 

RF 32% 22% 11% 65% 33% 57% 41% 34% 80% 

 

In Table 13, most of the features selected in “Top 10” defined the spammers behaviour well, except 

for the Fraction of follower per followee because this feature could be evaded by spammers, as 

they could purchase more followers and followees. 

 
Table 13 - Top 10 subset of features for 50 recent tweets 

 

Top 10 subset of features for 50 recent tweets 

Average time between posts (0.482) Maximum number of time between tweets (0.466) 

Mean amount of time between tweets (0.481) Mean word length (0.461) 

Max idle duration between posts (0.48) Fraction of follower per followee (0.449) 

Standard deviation tweet interval (0.475) Age of account (0.44) 

Tweet similarity - cosine similarity (0.473) Average number of characters (0.44) 

 

Table 14 shows the "CFS-50RT" of features extracted from 50RT. Most of the features in Table 

14 were the same as "CFS-20RT" from 20RT, except 50RT did not contain the Average number 

of time between tweets, tweets posted at 21:00 pm, and Third Set. According to the feature 

characteristics, the "CFS-20RT" features from 20RT were more effective at identifying spammers 

than 50RT, because Is Social Media was not an effective feature because it is time-consuming to 

extract and did not describe well spammer behaviors. For 50RT, 33% of tweets posted by 

spammers used @mention and only 31% of normal users, so the Number of Mentions was not an 

effective feature to identify spammers because spammers and normal users used almost the same 

number of @mention in their tweets, therefore it was hard to determine spammers based on this 

feature. 
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Table 14 - CFSSubsetEval subset of features for 50 recent tweets 

CFSSubsetEval subset of features for 50RT 

Number of Mentions Number of spamwords on screen name 

Number of Exclamation marks Maximum amount of time between tweets 

Number of Spam words URL ratio 

Is Social Media Hashtag ratio 

Median Number Of tweet retweeted Age of account 

 

Back to Table 12, the maximum TP rate for CFSSubsetEval subset of features was 80%, based on 

J48 and RF classifiers, so the performance of this subset of features was lower than the "Top 10".  

It can be seen that most of the features from the "Top 10" were more focused on spammer 

behaviours than "CFS-50RT". So this subset of features achieved a lower performance than the 

"Top 10", because the model could not satisfactorily capture spammer behaviour. 

4.1.3 - 100 Recent tweets 
 

Table 15 shows the TP rate results for spammers between the different subsets of features from 

100 recent tweets (100RT). According to the ANOVA results, there was a significant difference 

in the 95% confidence level between the nine subsets of features (P-value = 0.0005). Therefore, 

we performed the T-Test to find out the difference between every two subsets of features. As 

shown in Appendix - 100 Recent tweets, only "All Features and Top 1" (P-value = 0.0133) and 

"All Features and Top 5" (P-value = 0.0210) were significantly different, while the other subsets 

of features were not significant to each other. We then used the Equivalence Test to obtain the 

optimisation subset of features and the top three subsets of features were: "Top 10" (AVG 76% ± 

43%), "CFS-Top100" (AVG 75% ± 33%) and "Top 20" (AVG 74% ± 37%).  

Table 15 - Results for all subset of features in 100 recent tweets 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

100RT 

NB 61% 0% 11% 81% 39% 53% 55% 66% 48% 

SMO 69% 0% 0% 0% 14% 17% 49% 68% 31% 

IBK 12% 15% 19% 100% 33% 100% 25% 17% 100% 

J48 50% 24% 26% 100% 69% 100% 50% 52% 100% 

RF 23% 15% 17% 100% 71% 100% 35% 30% 100% 

 

By looking at Table 15, it can be seen that “Top 10”, “Top 20”, and “CFS-100RT” achieved 100% 

TP rate based on IBK, J48 and RF classifiers, while the rest of the subset of features did not 

achieved 100% TP rate on their classifiers. But, the minimum interval of the “CFS-100RT” (42%) 

is the highest compare to the “Top 10”, and “Top 20”. Because, we would like to choose a model 

that could detect the most spammers possible, therefore, we chose “CFS-100RT” to be the 

optimisation subset of features in 100RT. 
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Table 16 - CfsSubsetEval subset of features for 100 recent tweets 

CFSSubsetEval subset of features for 100RT 

Number of mentions Fraction of follower per followee 

Number of exclamation marks URL ratio 

Number of spamwords Median number of tweet retweeted 

Number of spamwords in screenname Age of accounts 

 

Table 16 shows the subset of features selected by CFSSubsetEval algorithm for 100RT and this 

subset of features was similar to the "CFS-20RT" and "CFS-50RT", except it did not contain the 

Is Social Media and Third Set and, as mentioned above, these features did not help to increase the 

performance. However, this subset of features performed very well in 100RT and achieved 100% 

TP rate by IBK, J48, and RF classifiers. However, there is one concern about this subset of feature 

that is Number of spamwords feature. It is a good feature to build a spammer detection system 

because spammers tended to post a higher percentage of spamwords than legitimate users, but this 

feature requires time to extract, and spammers can invent new spamwords, so we needed to update 

our spamword list, regularly, to make sure the system can capture all the spamwords. 

4.1.4 - 150 Recent tweets 
 

Table 17 shows the TP rate results for spammers between the different subset of features from 150 

recent tweets (150RT). According to the ANOVA results, there was no significant difference in 

the 95% confidence level between the nine subsets of features (P-value = 0.3443). So, we did not 

need to perform the T-Test to find the difference between every two subsets of features. We 

calculated and compared the maximum and minimum TP rate interval of every subset of features 

and found the top three subsets were: ""CFS-150RT" (AVG 52% ± 21%), "Top 1" (AVG 40% ± 

46%) and "Top 15" (AVG 48% ± 21%). It surprised us when increasing the number of recent 

tweets to 150 RT that "Top 1", "Top 15" and "CFS-150RT" were in the top three subsets of 

features. "Top 1" and "CFS-150RT" outperformed "Top 15" based on the maximum interval, but 

the minimum interval of "Top 1" was 0% compared to 26% and 30% of "Top 5" and "CFS-150RT", 

respectively. "Top 1" achieved 90% of the TP rate from IBK and RF classifiers, but we chose 

"CFS-150RT" instead of "Top 1" because it is the second highest maximum interval and the 

highest minimum interval. Also, if we built a model with only one feature, spammers would evade 

that feature easily. Therefore, we did not choose "Top 1" to be the optimisation subset of features 

for 150RT.  

 
Table 17 - Results for all subset of features in 150 recent tweets 

 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

150RT 

NB 63% 0% 19% 61% 42% 67% 62% 61% 42% 

SMO 33% 0% 0% 0% 14% 14% 12% 25% 22% 

IBK 15% 90% 14% 13% 66% 48% 15% 15% 73% 

J48 34% 20% 44% 37% 56% 49% 57% 52% 52% 

RF 34% 90% 15% 40% 62% 57% 46% 30% 74% 
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Table 18 - CfsSubset subset of features for 150 recent tweets 

 

CFSSubset subset of feature for 150 recent tweets 

Number of mentions per word Fraction of follower per followee 

Number of exclamation marks URL ratio 

Number of spam words Median number of tweet retweeted 

Is Social Media Age of account 

Number of spam words on screen name  

 

Table 18 shows all the selected features based on the CFSSubsetEval algorithm, and Table 17 

shows that the highest TP rate was 74%, which was not very efficient in detecting spammers 

compared to the other subset of features from 20RT, 50RT, and 100RT. The factors that affected 

this result were that some of the features were not very effective in describing the spammer 

characteristics. As mentioned in Section 4.1.1, Fraction of follower and followee is not good 

because spammers could evade Number of followers and followees by purchasing followers and 

followee online, and Is Social media is not good because it is time-consuming to extract these 

features, and also we need to update the list of social media regularly to avoid missing new ones. 

 

4.1.5 - 200 Recent tweets 
 

Table 19 shows the TP rate results for spammers between the different subset of features from the 

200 recent tweets (200RT). According to the ANOVA results, there was a significant difference 

in the 95% confidence level between the nine subsets of futures (P-value = 1.2315E-05). Thus we 

used the T-Test to find out the difference between every two subsets of features. As shown in 

Appendix - 200 Recent tweets, "All Features and Top 1" (P-value = 0.0139), "All Features and 

Top 5" (P-value = 0.0049), and "All Features and Top 10" (P-value = 0.0325) were significantly 

different, while the other subsets of features were not significantly different to each other. The 

Equivalence Testing results showed that "CFS-200RT" (54% ± SD: 22%), "Top 15" (44% ± SD: 

19%) and "Top 20" (45% ± SD: 23%), and were the Top 3 subsets of features. Out of the three 

best subsets of features in 200RT, we chose "CFS-200RT" as the optimisation subset of features 

overall, because the IBK classifier achieved a 79% TP rate, which was the highest result compared 

to "Top 15" and "Top 20" subset of features. Also, the overall performance of "CFS-200RT" was 

better than "Top 10" and "Top 20" based on the equivalence testing results as “CFS-200RT” 

achieved the highest maximum and minimum intervals. 

Table 19 - Results for all subset of features in 200 recent tweets 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

200RT 

NB 60% 0% 13% 23% 39% 72% 58% 55% 41% 

SMO 33% 0% 0% 0% 13% 13% 37% 32% 23% 

IBK 16% 21% 10% 21% 53% 29% 34% 20% 79% 

J48 54% 21% 15% 26% 56% 56% 52% 52% 58% 

RF 28% 21% 10% 22% 63% 57% 41% 35% 71% 



73 

 

 

Table 20 shows the subset of features selected by CFSSubsetEval algorithm from 200RT. Similar 

to 150RT, this subset of features did not optimise the performance for 200RT. Same as 150RT, we 

did not expect the Fraction of follower per followee, Is Social Media and URL ratio features to 

produce an effective model for spammer detection systems, as those features did not describe 

spammer characteristics well. 

Table 20 - CfsSubsetEval subset of features for 200 recent tweets 

CfsSubset subset of features for 200 recent tweets 

Number of exclamation marks Fraction of follower per followee 

Number of spam words URL ratio 

Is Social Media Median number of tweets retweeted 

Number of spam words in screen name Age of account 

4.1.6 The most effective model through feature selection 

 

This section was used to find the most effective content-based and user-based features (RQ1). 

Table 21 shows the combination of the optimisation subset of features from different numbers of 

recent tweets. According to the ANOVA results, there was no significant difference in the 95% 

confidence level between the five subsets of features (P-value = 0.2741), so it was not necessary 

to perform a T-Test. 

Table 21 - A combination of best subset from different numbers of recent tweets 

 Top10-20RT Top10-50RT CFS-100RT CFS-150RT CFS-200RT 

NB 93% 92% 48% 42% 41% 

SMO 0% 0% 31% 22% 23% 

IBK 69% 62% 100% 73% 79% 

J48 67% 61% 100% 52% 58% 

RF 71% 65% 100% 74% 71% 

 

Based on the Equivalence Testing results in Table 22, "CFS-100RT" had the highest maximum 

and minimum intervals compare to the other four subset of features. Thus, we chose "CFS-100RT" 

as the optimisation subset of features and the optimisation number of recent tweets overall.  

Table 22 - Equivalence test results of the optimisation subset of feature 

 Top10-20RT Top10-50RT CFS-100RT CFS-150RT CFS-200RT 

Max 95% 89% 109% 74% 77% 

Min 24% 22% 42% 30% 31% 

 

Table 23 shows the most effective features found in this research and they were extracted from 

100RT through the CFSSubsetEval algorithm.  
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Table 23 - The most effective features to identify spammers in twitter 

The most effective features extracted from CFS-100RT 

Number of mentions Fraction of follower per followee 

Number of exclamation marks URL ratio 

Number of spamwords Median number of tweet retweeted 

Number of spamwords in screenname Age of accounts 

4.1.7 The most efficient model through feature selection 

 

This section answers a part of research question two: "Which model is the most efficient at 

identifying spammers in Twitter?". In the previous section, the number of recent tweets is one of 

the factors that might affect making an efficient model, and another factor that could affect the 

model is the classifier. 

 

Table 24 shows in minutes the total time for feature extraction, time to build a model and to 

classify. We can see that there are two group of features: the first group is “Top10-20RT and 

Top10-50RT” and this group used Information Gain algorithm for feature selection process. The 

second group is “CFS-100RT, CFS-150RT, and CFS-200RT” and this group used CFSSubsetEval 

algorithm to find the relevant features. 

 

“Top10-20RT” used less time to build the model than “Top10-50RT” because “Top10-20RT” used 

less number of tweets than “Top10-50RT”, thus, it required less time for feature extraction and 

classification processes. Similarly, with “CFS-100RT”, “CFS-150RT”, and “CFS-200RT”, “CFS-

100RT” used less time than the other two subset of features because it used a smaller number of 

tweets than the other two subset of features. Furthermore, “CFS-150RT” and “CFS-200RT” 

extracted the Is Social Media feature from the tweets which requires the system to go through a 

CSV file that stores all the social media domain and check them against every tweets. Thus, “CFS-

150RT” and “CFS-200RT” are slower to build than “CFS-100RT”. 

Table 24 -Time to build the systems in minutes 

 Top10-20RT Top10-50RT CFS-100RT CFS-150RT CFS-200RT 

NB 3 7 2 3 5 

SMO 2 6 3 4 6 

IBK 4 9 11 13 17 

J48 5 9 4 5 7 

RF 3 7 3 3 5 

 

To find the efficient model, we are relying on the equivalence testing results in Table 22, and 

according to the results, the “CFS-100RT” subset of features is the best performance overall. In 

Table 24, we can see that the top two fastest model are“Top10-20RT” and “CFS-100RT”. 

Although it is faster to build “Top10-20RT” model than “CFS-100RT”, its TP rate is considerably 

lower than “CFS-100RT.” Therefore, we are considering “CFS-100RT” as the most efficient 

model and RF is the chosen classifier for this model because it is achieved 100% TP rate, instead 
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of NB achieved only 48% TP rate. Furthermore, RF is slower than NB by 1 minute only but the 

RF result is much higher than NB. Hence, we are considering RF is the best classifier. 

4.2 The ASDF vs the other existing systems  
 

In this section, we will compare the performance of our ASDF model with the existing systems in 

terms of TP rate, Precision, Recall, F-measure, Accuracy and Time. 

 

TP Rate 

 

Table 25 shows the TP rate between our ASDF model and the existing systems. It can be seen that, 

out of five classifiers, the ASDF model achieved 100% in IBK, J48 and RF classifiers. We were 

performing the ANOVA technique to determine if there is any significant difference between the 

systems. Based on the ANOVA results, there is a significant difference at 95% confidence level 

between the systems (P-value = 3.8643E-05).  

 

Thus, we carried out the T-Test technique to find out the significant difference between our ASDF 

model against the existing systems and the T-Test results showed that there is significant difference 

between “ASDF vs [6] (P-value = 0.02)”, “ASDF vs [1] (P-value = 0.04)”, “ASDF vs [14] (P-

value = 0.004)”, “ASDF vs [43] (P-value = 0.02)” and “ASDF vs [11] (P-value = 0.01)”. 

While, there are no significant difference between ASDF model and the rest of the systems. Then, 

we performed the equivalence testing to compare the maximum and minimum intervals of the 

systems to find out the best technique in term of TP rate. 

Table 25 - TP rate between ASDF model and existing systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 80% 30% 0% 10% 60% 30% 50% 40% 30% 40% 30% 

SMO 0% 10% 0% 0% 40% 10% 20% 0% 10% 0% 10% 

IBK 100% 30% 50% 10% 30% 40% 40% 50% 40% 20% 30% 

J48 100% 50% 50% 20% 70% 40% 60% 80% 60% 30% 50% 

RF 100% 40% 60% 0% 30% 40% 40% 70% 50% 10% 70% 

 

Table 26 shows all the equivalence testing results for ASDF model and the existing systems based 

on TP rate. The ASDF model gained the highest maximum and minimum interval compared to the 

rest of the systems, thus, we considered the ASDF model is the best performance in term of TP 

rate. 

Table 26 - Maximum and minimum intervals of the systems based on TP rate 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 120% 50% 60% 20% 60% 50% 60% 80% 60% 40% 60% 

Min 30% 20% 0% 0% 30% 20% 30% 20% 20% 0% 20% 
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Precision 

Table 27 shows the precision between ASDF and the existing systems. It can be seen that, the 

highest precision in this table is 100% and the lowest is 0%, which mean that classifiers cannot 

predict any spammers. ASDF and [44] achieved 100% precision but ASDF can achieve them using 

IBK, J48, and RF, while [44] based on SMO classifier only. Hence, it seems like the ASDF’s 

features are better than [44]. ANOVA results showed that there is a significant difference between 

the ASDF against the existing systems at 95% confidence level (P-value = 0.007). Therefore, we 

also performed T-Test technique to find the significant difference between ASDF against every 

single system. According to the T-Test results, only two systems are significantly different to 

ASDF: “ASDF vs [14] (P-value = 0.02)” and “ASDF vs [11] (P-value = 0.03)”.  

Table 27 - Precision of ASDF vs the existing systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 17% 30% 0% 10% 37% 68% 38% 25% 28% 10% 28% 

SMO 0% 72% 0% 0% 38% 80% 73% 0% 100% 0% 37% 

IBK 100% 36% 56% 13% 53% 43% 50% 64% 44% 22% 69% 

J48 100% 36% 20% 13% 56% 39% 49% 77% 56% 28% 53% 

RF 100% 71% 67% 80% 65% 61% 76% 88% 69% 23% 81% 

 

We have performed equivalence testing to find the best model based on its performance. According 

to the Table 28, the ASDF model has the highest maximum interval, while the minimum number 

of interval is lower than [6], [7], [43], [15], [40], [44] and [10]. However, in Table 27, our model 

achieved 100% precision with three classifiers, which is considerably higher than the maximum 

interval of all the other systems, thus ASDF model outperformed the others in term of precision. 

Table 28 - Equivalence testing results of Precision for the systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 113% 69% 75% 14% 61% 75% 73% 87% 86% 27% 75% 

Min 12% 28% 3% 3% 37% 41% 40% 13% 32% 5% 31% 

 

Recall 

 

Table 29 shows that the ASDF model achieved the best recall performance compare to the existing 

systems. It achieved 100% with IBK, J48, and RF, and 81% with NB classifier, which is still the 

higher than the recall performance of the other systems. To determine the significant difference 

between the systems, we carried out the ANOVA technique and based on the results there is a 

significant difference at 95% confidence level between the systems (P-value = 3.8643E-05). 

According to the T-Test results, there are five systems that are significanty different to ASDF: 

“ASDF vs [6] (P-value = 0.02)”, ”ASDF vs [1] (P-value = 0.04)”, ”ASDF vs [14] (P-value = 

0.004)”, ”ASDF vs [43] (P-value = 0.02)”, and ”ASDF vs [11] (P-value = 0.14)”.  
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Table 29 - Recall of ASDF model and the existing systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 81% 25% 0% 11% 62% 30% 54% 36% 35% 43% 34% 

SMO 0% 14% 0% 0% 38% 10% 22% 0% 13% 0% 13% 

IBK 100% 32% 54% 14% 27% 42% 36% 55% 41% 22% 34% 

J48 100% 46% 46% 17% 65% 36% 61% 76% 57% 27% 46% 

RF 100% 40% 59% 4% 34% 39% 35% 73% 45% 14% 66% 

 

Table 30 shows the maximum and minimum interval values for all the systems and it can be seen 

that ASDF model gained the highest maximum and minimum interval. Thus, we considered ASDF 

is the best one in term of recall. 

Table 30 - Maximum and Minimum interval of recall for the systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 119% 43% 61% 16% 62% 44% 57% 79% 54% 37% 57% 

Min 32% 18% 2% 2% 28% 18% 25% 16% 21% 5% 19% 

 

F-measure 

 

Table 31 shows the F-measure results for all the systems, and similar to Precision and Recall, our 

ASDF model achieved 100% on IBK, J48 and RF as well. On the other hand, [14] is the worst 

performing system because it obtained only 15% F-Measure. In this evaluation metric, the 

ANOVA results showed that there is significant difference at 95% confidence level (P-value = 

0.0001). We also carried out the T-Test technique and the results showed that there are two systems 

that are significantly different to ASDF: “ASDF vs [14] (P-value = 0.01)”, and “ASDF vs [11] (P-

value = 0.02)”. 

Table 31 - F-Measure results for all the systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 28% 28% 0% 10% 46% 41% 45% 30% 31% 16% 31% 

SMO 0% 24% 0% 0% 38% 18% 33% 0% 22% 0% 19% 

IBK 100% 34% 55% 14% 35% 43% 42% 59% 43% 22% 46% 

J48 100% 41% 57% 15% 60% 37% 55% 77% 56% 27% 49% 

RF 100% 51% 63% 6% 45% 47% 48% 80% 55% 17% 73% 

 

According to Table 32, our maximum interval is 113% which is the highest compare to the rest of 

the systems, and [7] gained the highest minimum interval, which is 35%. However, [7] maximum 

interval (54%) is much lower than ASDF, thus we considered ASDF model to be the best model 
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in terms of F-measure. Meanwhile, [14] is the worst model as its maximum and minimum interval 

are the lowest. 

Table 32 - Equivalence testing results for F-measure of the systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 113% 46% 67% 15% 54% 48% 52% 83% 56% 26% 63% 

Min 17% 24% 2% 2% 35% 25% 36% 15% 26% 6% 23% 

 

Accuracy 

 

Table 33 shows the accuracy results of the systems. Our ASDF model achieved 100% based on 

IBK and RF and it is the most accurate model. However, with the NB classifier, ASDF achieved 

only 51% which is the lowest comparing to the other systems. According to the ANOVA results 

there is no significant difference at 95% confidence level between the systems (P-value = 0.53). 

Thus, we do not need to perform T-Test here. 

 

To determine how well all the systems performing and also to find out the best one, we have 

calculate the maximum and minimum interval values for each of the systems as shown in Table 

34. 

Table 33 - Accuracy results of the systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10]  

NB 51% 90% 89% 84% 88% 91% 89% 88% 89% 65% 83%  

SMO 88% 93% 89% 92% 90% 91% 93% 93% 93% 91% 88%  

IBK 100% 90% 90% 85% 92% 89% 92% 94% 92% 87% 91%  

J48 99% 90% 92% 84% 93% 88% 91% 96% 93% 88% 90%  

RF 100% 94% 92% 88% 93% 91% 93% 97% 94% 89% 94%  

 

According to the results shown in Table 34, it can be seen that the ASDF model gained the highest 

maximum (100%) interval. However, we chose [40] to be the best system in terms of accuracy 

because its maximum interval is 97% and its minimum interval is 90%. [40] maximum interval is 

about 100%, while its minimum interval is the highest compare to the other systems. 

Table 34 - Equivalence testing results for accuracy of the systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 100% 93% 91% 90% 93% 91% 93% 97% 94% 94% 93% 

Min 66% 89% 88% 83% 89% 88% 89% 90% 90% 73% 85% 
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Time 

 

Table 35 shows the total time required to extract features, to build the model and to classify every 

system in minutes. In this research ASDF model is the fastest model as it took only 3 minutes to 

build and classify. Also, it can be seen that [10] took 15 minutes, and it is the second fastest system 

in this research. However, there is one feature that is not effective in identifying spammers such 

as Fraction Of Mention Contain URL and, according to our dataset, we found a very small number 

of @mention tweets containing the URL, which means the Fraction Of Mention Contain URL did 

not contribute too much to identifying spammers. 

 

Additionally, [14] system is the longest system in this research. Most of the features used in this 

system used the CSV file to check the tweets. For example, to check whether or not a tweet 

contained a city name needed a CSV file that contained many cities. Thus, the time it took to 

extract the feature depends on the size of the CSV file and the number of tweets. Also, [14] 

performance was not very impressive compared to other existing systems. Hence, the [14] subset 

of features was not very effective and efficient in identifying spammers. 

 

ASDF is the fastest model in this research because the “CFS-100RT” subset of features are easy 

to extract as those features did not require any complicated steps to extract like Maximum number 

of tweets per week or Minimum number of time between tweets. Those features only take 

information from the tweets and most of them do not require any CSV files for feature extraction. 

The only two features require CSV files in “CFS-100RT” are the Number of spam words and 

Number of spam words in screenname. However, these two features are good to describe 

spammers, because spammers contain more spam words in their tweets than legitimate users. 

Table 35 - Time recorded for every system in minutes 

The systems Time (minutes) 

ASDF 3 

[10] 15 

[1] 20 

[44] 27 

[6] 30 

[15] 35 

[40] 112 

[43] 158 

[7] 565 

[11] 793 

[14] 897 

4.3 Best model to tackle with spam drift problem  
 

In previous sections, we used WEST to performed all the experiments and we found the “CFS-

100RT” is the optimisation subset of features to identify spammers in Twitter. In this experiment, 
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we also test this subset of features against spam drift problem (i.e. on a second test dataset 

containing tweets taken from period newer than the training dataset) and according to the results 

shown in Table 36, it is detecting 91% TP rate based on the new dataset [39] which has tweets 

taken from 3 years after the tweets in the training dataset. Hence, its performance decreased 9% 

compared to its performance on our first test dataset [11]. 

According to [21], spammers were using 3rd party API to post more tweets throughout the day. 

[72] also found that spammers post high numbers of tweets (more than 50 tweets per day). In the 

new dataset, most of the spammers posted a very small number of tweets in one day as shown in 

Figure 19; the number of users who posted less than 10 tweets is more than 3000 users, while there 

are a very small number of users who post more than 10 tweets per day. That means in the new 

dataset, the spammer behaviour has changed; they posted fewer tweets to disguise themselves as 

legitimate users. However, as shown in Table 36, the ASDF model is still coping well against spam 

drift problem as it obtained 91% TP rate.  

 
 
Figure 19 - Number of tweets posted by users 

Although spammers were changing their behavior by modified the number of tweets posted in one 

day, ASDF was not affected because "CFS-100RT" subset of features does not contain any time-

relation features. “CFS-100RT” subset of features focused more on spammer characteristics for 

example, Number of mentions, Number of spam word, Number of Spamword on screen name, or 

URL ratio. Spammers cannot spread their contents to the users without using @mention or without 

including URL in their tweets, therefore, "CFS-100RT" subset of features could detect spammers 

even when there are the spam drift phenomena. However, WEST is still necessary and a novel tool 

for researchers to test and evaluate their spammer detection systems, because the users could 

quickly test their subset of features against spam drift or modify their subset of features if it is not 

coping well with spam drift problem. 

We also tested the performance of the existing systems against spam drift problem (i.e. we tested 

the existing system on the new dataset [39]) and compared it to ASDF in terms of TP rate, 

Precision, Recall, F-measure, and Accuracy.  
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Table 36 below showed that the TP rate of ASDF model is the best. Although [6]'s system achieved 

100% with IBK and is the highest results, it is not a good set of features because its performance 

is not consistent. With [6] we can only detect spammers when we use IBK classifiers. Meanwhile, 

ASDF could detect spammers with at least 50% TP rate regardless of the classifiers. 

We have performed the ANOVA techniques for finding the significant difference between the 

systems and based on the results, there is significant difference at 95% confidence interval between 

the systems (P-value = 2.3359E-08). We also performed the T-Test techniques between ASDF and 

against every systems and the results showed that the ASDF model has significant difference with 

the existing systems: (“ASDF vs [6] (P-value = 0.02)”, “ASDF vs [1] (P-value = 0.0001)”, “ASDF 

vs [14] (P-value = 0.0005)”, “ASDF vs [7] (P-value = 0.0001)”, “ASDF vs [43] (P-value = 

0.0001)”, “ASDF vs [15] (P-value = 0.0001)”, “ASDF vs [40] (P-value = 0.0001)”, “ASDF vs [44] 

(P-value = 0.0001)”, “ASDF vs [11] (P-value = 0.0005)”, “ASDF vs [10] (P-value = 0.0002)”. 

Table 36 - Performance results of the ASDF model vs existing systems based on TP rate 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 80% 0% 0% 30% 0% 0% 0% 0% 0% 30% 20% 

SMO 80% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

IBK 75% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

J48 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

RF 91% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

To determine the optimisation subset of features, we have calculated the maximum and minimum 

intervals for every systems as shown in the Table 37 below. It can be seen that the ASDF model 

achieved the highest maximum and minimum interval against the existing systems. This means 

that the existing systems cannot cope well with spam drift problem as they all achieved very low 

maximum and minimum interval. 

Table 37 - Maximum and minimum interval of TP rate of the systems against spam drift problem 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 90% 60% 0% 2% 0% 0% 0% 0% 0% 2% 1% 

Min 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

Precision 

 

Table 38 showed the experiment results between ASDF and the existing systems based on 

Precision. [10] obtained 100% precision with NB, SMO and IBK classifiers but got 0% with J48 

and RF. [6] and ASDF achieved 80% of precision, which is the second highest result. However, 

the ASDF model is more consistent the the rest of the classifiers because this model is able to 

detect spammers regardless of the classifiers. 

 

We have performed the ANOVA technique to see the significant difference between ASDF model 

and the existing systems and based on the results, there is a significant difference between the 
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systems (P-value = 5.4757E-07). Therefore, we also carried out the T-Test technique and the 

results showed that the ASDF model is signicantly different to all of the existing systems: (“ASDF 

vs [6] (P-value = 0.002)”, “ASDF vs [1] (P-value = 9.0301E-05)”, “ASDF vs [14] (P-value = 

0.003)”, “ASDF vs [7] (P-value = 9.0301E-05)”, “ASDF vs [43] (P-value = 9.0301E-05)”, “ASDF 

vs [15] (P-value = 2.2601E-05)”, “ASDF vs [40] (P-value = 9.0301E-05)”, “ASDF vs [44] (P-

value = 9.0301E-05)”, “ASDF vs [11] (P-value = 0.003)”, “ASDF vs [10] (P-value = 0.24)”. 

Table 38 - Precision results of ASDF model and existing systems against spam drift 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 70% 0% 0% 50% 0% 0% 0% 0% 0% 50% 100% 

SMO 70% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 

IBK 100% 80% 0% 0% 0% 0% 10% 0% 0% 0% 100% 

J48 80% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

RF 70% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

To determine the best system in term of Precision, we calculated the maximum and minimum 

intervals for the systems and Table 39 showed that [10] achieved the maximum interval with 110% 

which is the highest result, while ASDF achieved only 90% of maximum interval which is the 

second highest result. However, the minimum interval of [10] is much lower comparing to ASDF 

model. Because the maximum interval of ASDF is not very much lower than [10], we are 

considering ASDF model as the best technique in term of Precision. 

Table 39 - Equivalence testing results of Precision for the systems against spam drift 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 90% 50% 0% 3% 0% 0% 1% 0% 0% 3% 110% 

Min 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 

 

Recall 

 

Table 40 showed the results of recall for the systems against spam drift phenomena. It can be seen 

that, although [6] obtained the highest recall (100%) with IBK, this system cannot detect any 

spammers if they use other classifiers such as NB, SMO, J48 and RF. As shown in Table 40, the 

ASDF model got the second highest recall values of 90% with RF and it can detects at least 50% 

spammers in term of spam drift with any classifiers. 

Table 40 - Results of recall of ASDF and the existing systems against spam drift 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 80% 0 0 30% 0 0 0 0 0 30% 20% 

SMO 80% 0 0 0 0 0 0 0 0 0 0 

IBK 80% 100% 0 0 0 0 0 0 0 0 0 

J48 50% 0 0 0 0 0 0 0 0 0 0 

RF 90% 0 0 0 0 0 0 0 0 0 0 
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We have performed the ANOVA techniques for the systems in Table 40 above and it shown that 

there is a significant difference at 95% confidence level between the systems (P-value = 1.5586E-

08). Thus, we carried out the T-Test for the systems and according to the results the ASDF model 

is significantly different to the existing systems: (“ASDF vs [6] (P-value = 0.02)”, “ASDF vs [1] 

(P-value = 0.0001)”, “ASDF vs [14] (P-value = 0.0005)”, “ASDF vs [7] (P-value = 0.0001)”, 

“ASDF vs [43] (P-value = 0.0001)”, “ASDF vs [15] (P-value = 0.0001)”, “ASDF vs [40] (P-value 

= 0.0001)”, “ASDF vs [44] (P-value = 0.0001)”, “ASDF vs [11] (P-value = 0.0005)”, “ASDF vs 

[10] (P-value = 0.0003)”. We also calculated the maximum and minimum intervals for every 

systems as shown in Table 41 below. It can be seen that, ASDF model is achieving the highest 

maximum and minimum intervals. So, in term of recall, we consider ASDF as the best model. 

Table 41 - Maximum and Minimum intervals of the systems against spam drift in term of Recall 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 90% 60% 0% 20% 0% 0% 0% 0% 0% 20% 10% 

Min 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

F-measure 

 

According to Table 42, most of the existing spammer detections systems did not performing well 

at handling the spam drift problem. In this evaluation metrics, the ASDF model and [6] performed 

well at detecting spammers. However, [6] only achieved 90% based on IBK classifier, which is 

the highest result. But in term of consistency, the ASDF model achieved 60% based on J48 and 

80% with the other classifiers. So, it seems like the ASDF model is outperforming the other 

existing systems. 

 

We carried out the ANOVA techniques and the results showed that there is a significant difference 

between the systems at 95% of confidence interval (P-value = 1.2207E-08). Also, in the T-Test 

results, the ASDF model is significantly different to the rest of the systems as well (“ASDF vs [6] 

(P-value = 0.01)”, “ASDF vs [1] (P-value = 2.2601E-05)”, “ASDF vs [14] (P-value = 0.0005)”, 

“ASDF vs [7] (P-value = 2.2601E-05)”, “ASDF vs [43] (P-value = 2.2601E-05)”, “ASDF vs [15] 

(P-value = 2.2601E-05)”, “ASDF vs [40] (P-value =2.2601E-05 )”, “ASDF vs [44] (P-value = 

2.2601E-05)”, “ASDF vs [11] (P-value = 0.0005)”, “ASDF vs [10] (P-value = 0.0005)”. 

Table 42 - F-Measure results for ASDF and the existing systems against spam drift 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 80% 0 0 40% 0 0 0 0 0 40% 40% 

SMO 80% 0 0 0 0 0 0 0 0 0 0 

IBK 80% 90% 0 0 0 0 0 0 0 0 0 

J48 60% 0 0 0 0 0 0 0 0 0 0 

RF 80% 0 0 0 0 0 0 0 0 0 0 
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We calculated the maximum and minimum interval for the systems to determine the best one as 

shown in Table 43. Based on the results, we can see that ASDF model is outperforming the existing 

systems because its maximum and minimum intervals are the highest. Therefore, we are 

considering ASDF is the best model in term of F-Measure. 

Table 43 - Maximum and Minimum intervals of the systems against spam drift in term of F-Measure 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 80% 60% 0% 30% 0% 0% 1% 0% 0% 30% 30% 

Min 70% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

Accuracy 

 

Table 44 showed the Accuracy of the systems and it can be clearly seen that all the systems could 

detect spammers with 2% to 81% accuracy, which is much better then the previous evaluation 

metrics. However, similarl to the other four evaluation metrics, the ASDF model and [6] are the 

highest performance systems compared to the rest of the existing systems. 

 

For finding the best model in Accuracy, we performed the ANOVA technique and the results 

showed that there is a significant difference at 95% confidence interval on the systems (P-value = 

1.1865E-07). In term of Accuracy, the T-Test showed that there is no significant difference 

between “ASDF vs [6] (P-value = 0.07) “. However, there is a significant difference between 

ASDF model and the rest of the existing systems “ASDF vs [1] (P-value = 0.0013)”, “ASDF vs 

[14] (P-value = 0.0013)”, “ASDF vs [7] (P-value = 0.0014)”, “ASDF vs [43] (P-value = 0.0011)”, 

“ASDF vs [15] (P-value = 0.0006)”, “ASDF vs [40] (P-value = 0.0013)”, “ASDF vs [44] (P-value 

= 0.0010)”, “ASDF vs [11] (P-value = 0.0014)”, “ASDF vs [10] (P-value = 0.0007)”. 

Table 44- Accuracy results of ASDF and the existing systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 69% 38% 40% 42% 38% 40% 26% 40% 40% 42% 43% 

SMO 61% 40% 40% 40% 40% 40% 27% 40% 40% 39% 28% 

IBK 62% 81% 40% 40% 40% 27% 2% 40% 30% 40% 28% 

J48 58% 40% 40% 40% 40% 40% 27% 40% 40% 40% 27% 

RF 80% 40% 40% 40% 40% 40% 27% 40% 40% 39% 27% 

 

Table 45 below showed the maximum and minimum intervals of the systems. Based on the results, 

the top two systems are: the ASDF model and [6]. [6] achieved the highest maximum intervals 

(70%) but for the minimum interval; the ASDF model is the highest (60%). Thus, we consider 

ASDF model outperformed the rest of the systems in term of Accuracy. 

Table 45 - Maximum and Minimum intervals of the systems against spam drift in term of Accuracy 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 70% 70% 40% 40% 40% 40% 30% 40% 40% 40% 40% 
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Min 60% 30% 40% 40% 40% 30% 10% 40% 30% 40% 20% 

 

From the results above, we can conclude that ASDF is the most resilient model against spam drift 

problem, as it is consistently detecting spammers with high TP rate, Precision, Recall, F-Measure 

and Accuracy on the new dataset. The second best model is [6] as it can achieve the best TP rate, 

recall, F-measure and Accuracy based on the IBK classifier. Most of the subset of features used 

from the existing spam detection systems cannot handle the spam drift problem very well as most 

of the time it cannot detect any spammers. These results highlight the importance of utilising 

WEST for future researchers because this tool enable the researchers to quickly test and evaluate 

the performance of their system against the spam drift phenomenon. 
 

4.4 Chapter summary  
 

This chapter outlines the results of the experiments carried out for investigation studies on the 

features that have been proposed by the existing spammer detection systems. We used WEST to 

implement all the techniques surveyed, such as content-based and user-based features, number of 

recent tweets, feature selection algorithms and classifiers. 

 

In this research, we have three research questions and have carried out several experiments. Based 

on our investigation results, we found a ASDF model (RQ1 and 2) that could effectively and 

efficiently identify spammers. Based on the results, it is outperforming the existing systems also: 

it took 3 minutes to build and classify. We also carried out another experiment (RQ3) with a new 

dataset and ASDF is detecting spammers at 91% TP rate. The existing systems however cannot 

handle spam drift well. Comparison of ASDF against the existing models showed that our model 

is outperforming the existing models. 

 

In the next chapter, we will summarise the whole thesis, discuss the limitations of this research, 

find this research and also make improvements for the further research. 
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        CHAPTER 5 

CONCLUSION & FUTURE WORK 
 

The objective of this research is to find the most effective features (RQ 1), efficient model (RQ 2) 

and a resilient system (RQ 3) to identify spammers on Twitter. The previous chapter showed the 

experimental results to find the most efficient, effective and resilient model based on the existing 

techniques and we found a model and called ASDF and this model achieved 91% TP rate. In the 

previous Chapter, we also compared the performance of the ASDF model against the existing 

systems in term of spam drift and according to the results, the ASDF model is outperforming to 

the rest of the systems. 

 

This chapter summarises the research objectives, presents the significance of the final findings and 

discusses improvements that could be used for furthering the research.   

5.1 Summary of the research objective 
 

Twitter is a popular social networking platform released in 2006. Users interact by sending text-

based messages, knows as tweets. A tweet is limited to 140 characters [5]. Its popularity attracts 

many spammers and about 83% of users have received at least one unwanted friend request or 

message on social networks [9]; about 3% of the tweets are spam, and 45% of users click on links 

posted by friends from their friend list's account, even though they do not know those people in 

real life [6]. The users identify spam manually based on their experience, thus this could lead to 

false positive problems and time wasting.  

 

Many approaches have been proposed to distinguish between spammers and legitimate users such 

as [4, 6, 11, 22, 40]. It is also a challenge to determine the best system to identify spammers on 

Twitter, since all the existing systems employ different techniques, such as using different features, 

or extracting the features on different numbers of recent tweets and classifier(s). The best system 

is one which is able to efficiently identify spammers with a high degree of accuracy, where 

efficiency is a measure of the speed at which the system can detect spammers, and the time taken 

to extract the features. The factors that may affect these criteria are feature selection and 

classifiers(s). The feature selection criteria involve the time taken to extract the features, and how 

well the features perform in spammer detection. The classifier(s) criteria involve the time taken to 

build a model based on the selected features, selection of the best classifiers to identify spammers 

based on the proposed model, and the time taken to generate the results. 

 

Furthermore, spammers keep evading current existing systems by changing the key features to 

disguise as legitimate accounts; this is known as spam drift. Also, most of the researchers did not 

evaluate their systems against spam drift, such as [15], [14]. 

 

In this research, we have investigated and identified a collection of current existing techniques that 

are effective, efficient and resilient at detecting spammers on Twitter based on three main 
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categories: best subset of features used to build the proposed model, the least number of recent 

tweets for feature extraction, and the best classifier to train the model. We also objectively 

compared the model that we found from answering the RQ 1 and 2 with the existing systems and 

evaluated the performance between them. It showed that this model outperformed the existing 

systems and coping well with spam drift with 91% TP rate (RQ 3). 

 

In undertaking this research, we have defined the problem statement and the research questions as 

outlined in Chapter 1. The literature review regarding spam or spammer detection systems on 

Twitter, and also the current techniques to detect spam in other media platforms, such as YouTube 

or email, are examined in Chapter 2. Chapter 3 discussed the methodology used to build our 

proposed system, including how to extract the content-based and user-based features, and it details 

experiments for finding the least number of recent tweets, classifier(s) and evaluation. The 

experiments and evaluation results are analysed in Chapter 4 in order to answer the research 

questions. 

5.2 Significance of Final Findings 
 

The problem statement for the research has been answered, based on the results of the experiments 

carried out to find the most effective and efficient model to identify spammers in Twitter.  

  

 Problem Statement: "What is the most effective, efficient and resilient model for detecting 

spammers on Twitter?" 

 

The best model for detecting spammers on Twitter is one that detects most accurately (measured 

in TP rate) in the shortest time possible. There are two parts were carried out to find the answer to 

the problem statement: the first part used to find the most effective features (RQ1) and most 

efficient model (RQ2) to build the ASDF. The second part used to find the resilient model (RQ3), 

it is testing whether the ASDF model found from RQ1 and RQ2 is able to cope with spam drift. 

 

 RQ1: "What are the most effective content-based and user-based features for detecting 

 spammers on Twitter?" 
 

To find the most effective features, we used feature selection algorithms; InfoGain (we used 

ranking method to find top 1, 5, 10, 15, 20, 50 and 100 features) and CFSSubset to determine the 

most relevant subset of features for different numbers of recent tweets, such as 20RT, 50RT, 

100RT, 150RT and 200RT. The results obtained showed the "CFS-100RT" subset of features 

extracted from 100RT is the optimisation subset of features to identify spammers, because it 

achieved a 100% TP rate, and Table 46 shows the optimisation subset of features from 100RT. 

Table 46 - Best subset of features from 100RT 

CFS-100RT subset of features from 100RT 

Number of mentions Number of mentions 

Number of exclamation marks Number of exclamation marks 

Number of spamwords Number of spamwords 

Number of spamwords in screenname Number of spamwords in screenname 
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We also found the optimisation subset of features for each the number of recent tweets 20RT, 

50RT, 150RT and 200RT. However, these subset of features did not perform well against 100RT 

in the experiments.   

 

 RQ2: "Which model is the most efficient at identifying spammers on Twitter?" 

 

The most efficient model to identify spammers is determined by the optimisation number of recent 

tweets and the best classifier. Because the "CFS-100RT" subset of features extracted from 100RT 

is the optimisation subset of features, we chose 100RT as the optimisation number of recent tweets 

for feature extraction, and RF classifier as the best classifier and also it is the fastest model 

compared to the existing systems. Therefore, "CFS-100RT" subset of features extracted from 

100RT (RQ 1) contained the most effective features, and 100RT and RF classifier is becoming the 

efficient model (RQ 2) for identifying spammers on Twitter.  

 

 RQ3: "Which model is the most resilient at handling the spam drift phenomena?" 

We used the model that we have found in RQ1 and RQ2 to test its performance against spam drift 

problem. In this test, we used a latest dataset with tweets posted in 2015 and the results showed 

that ASDF model is able to detect at 91% TP rate, which means it is coping well with spam drift 

phenomena. Also, we tested the performance of the ASDF model against the existing systems on 

spam drift problem based on the common evaluation metrics. However, the results showed that 

their systems were not coping well with spam drift. While our ASDF model is achiving very well 

performance across all evaluation metrics. Thus, we believed ASDF is the most resilient model at 

handling the spam drift phenomena. 

5.3 Summary and Future work 

 

Twitter is a web application that allows users to post messages, called tweets, of up to 140 

characters. Spammers exploit Twitter functions to spread malicious content. Therefore, 

identification of spammers is necessary to provide a clean environment for Twitter users. In this 

research, we studied the existing techniques to create a spammer detection system, such as features 

to identify spammers, a number of recent tweets for feature extraction and the classifiers to train 

the system. Based on these existing techniques, we found the most efficient, effective and resilient 

model to detect spammers on Twitter. 

 

The main issues here are that many features have been proposed by different authors, and different 

numbers of recent tweets used to extract the features and different classifiers have been used to 

train the model. Therefore, it is difficult to evaluate the existing system's performance since they 

all use different techniques and spammers keep evading existing systems by changing their key 

features to disguise as a legitimate user; this phenomenon is called spam drift. In this research, we 

tried to find the most efficient, effective and resilient model to identify spammers. To do this, we 

collected 172 content-based and user-based features from different systems, used different 

numbers of recent tweets, such as 20RT, 50RT, 100RT, 150RT, and 200RT, and used two feature 

selection algorithms, such as InfoGain and CFSSubset, and five common classifiers (Naive Bayse, 

Support Vector Machine, Decision Tree, K-Nearest Neighbour, and Random Forest) to deploy 

many experiments in order to answer our research questions. Consequently, we needed a model 
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that could cope well with spam drift problem. Our ASDF model is tested and evaluated against the 

spam drift problem and this model could detect up to 91% TP rate in fact of spam drift. 

 

We also performed the comparison between our model ASDF and the existing systems based on 

their performance against spam drift. The results showed that, the existing systems cannot handle 

spam drift well comparing to our model. The reason behind is that spammers were changing their 

behavior and the existing systems did not test their system against spam drift, while we did test the 

ASDF model against spam drift phenomena and this is why we believed our invented tool; WEST 

is helpful for future researchers to test their model. Furthermore, our model took only 3 minutes 

to build and classify, which is the fastest comparing to the existing systems. 

 

Nevertheless, there is still room for improvement that can be continued in future work. We could 

improve the model by changing from content-based and user-based level to user-based and graph-

based level, because graph-based focuses more on user behaviour and this is harder for spammers 

to disguise their account as a legitimate user, while content-based focuses on the linguistics of the 

tweets and it is requiring more time to process than graph-based and user-based. In fact, of identify 

spammers with faster time possible, we believed graph-based and user-based will be more efficient 

than content-based and user-based. 

 

Also, we will improve the UI of WEST to optimise the experience for the users and provide more 

algorithms to WEST as the current version only contains some basic classifiers and algorithms for 

feature selection and classification processes.  

 

To conclude, we investigated and studied a collection of current existing features to find an 

effective, efficient and a resilient model for spammers detection on Twitter and this model is 

coping well with spam drift and it achieved a 91% TP rate. Also, we believe that our research 

makes a significant contribution and provides substantial information to the community in the 

field, as well as expanding knowledge for future researchers. 
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APPENDIX  
 

20 Recent tweets 
 

Table 47 shows the TP rate result for spammers between the different subset of features from the 

20 recent tweets. The ANOVA results show that no signficant difference at 95% confidence level 

between the nine subset of features (P-value = 0.0175), therefore we did not perform the T-Test 

technique.  

Table 47 - The results of the subset of features for 20 Recent Tweets 

 All Features Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 CFS-20RT 

NB 67% 0% 93% 93% 70% 80% 66% 67% 42% 

SMO 38% 0% 0% 0% 45% 13% 26% 42% 10% 

IBK 43% 26% 22% 69% 24% 48% 41% 42% 67% 

J48 51% 22% 43% 67% 43% 75% 59% 71% 79% 

RF 41% 30% 22% 71% 33% 61% 42% 42% 79% 

 

Table 48 shows the equivalence testing results for "All Features" and "Top 1", and, according to 

the T-test results (P-value = 0.0025), there was a difference between the two subsets of the features. 

It can be seen that "All Features" performed better than "Top 1", because the maximum and 

minimum of intervals were higher than "Top 1". 

Table 48 - Equivalence testing results for All Features and Top 1 of 20 recent tweets 

 All Features Top 1 

Max 59% 30% 

Min 35% 1% 

 

Table 49 shows the equivalence testing results for "All Features" and "Top 5". According to the 

T-test results (P-value = 0.2479), there was no difference between the two subsets of features. 

Based on the maximum interval, "Top 5" had better performance than "All Features", but it was 

not very much higher than "All Features". However, the minimum of "Top 5" was very low 

compared to the minimum of "All Features", therefore, we considered "All Features" was better 

than "Top 5". 

Table 49 - Equivalence testing results for all features and top 5 of 20 recent tweets  

 All Features Top 5 

Max 59% 71% 

Min 35% 0% 

 

Table 50 shows the Equivalence testing results for "All Features" and "Top 10". According to the 

T-test results (P-value = 0.2435), there was no difference between two subsets of features. Based 
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on the maximum and minimum intervals, it can be seen that the maximum of "Top 10" was much 

higher than "All Features", although the minimum of "Top 10" was smaller than "All Features", 

but it was not a lot smaller than "All Features"; therefore, we consider "Top 10" performed better 

than "All Features". 

Table 50 - Equivalence testing results for all features and top 10 of 20 recent tweets  

 All Features Top 10 

Max 59% 95% 

Min 35% 25% 

 

Table 51 shows the Equivalence testing results for "Top 10" and "Top 15". According to the T-

Test results (P-value = 0.1800), there was no difference between the two subsets of features. Based 

on the maximum and minimum intervals, we consider that "Top 10" had better performance than 

"Top 15" because the maximum interval of "Top 10" achieved 95% which was much higher than 

"Top 15" and the minimums of two subsets of features were about the same, therefore, "Top 10" 

was better than "Top 15". 

Table 51 - Equivalence testing results for top 10 and top 15 of 20 recent tweets 

 Top 10 Top 15 

Max 95% 60% 

Min 25% 25% 

 

Table 52 shows the Equivalence testing results for "Top 10" and "Top 20". According to the T-

Test results (P-value = 0.4109), there was no difference between the two subsets of features. Also, 

it can be seen that the maximum of "Top 10" was higher than "Top 20" and the minimum of "Top 

10" was not much smaller than "Top 20". Thus, we consider "Top 10" performed better than "Top 

20". 

Table 52 - Equivalence testing results for top 10 and top 20 of 20 recent tweets 

 Top 10 Top 20 

Max 95% 81% 

Min 25% 29% 

 

Table 53 shows the Equivalence testing results for "Top 10" and "Top 50". According to the T-

Test results (P-value = 0.2329), there was no difference between two subsets of features. Based on 

the Equivalence testing results, the minimum of "Top 10" was smaller than "Top 50, but there was 

not a very big difference between the two results. However, the maximum of "Top 10" was much 

higher than "Top 50", thus we considered "Top 10" better than "Top 50". 

 
Table 53 - Equivalence testing results for top 10 and top 50 of 20 recent tweets 

 Top 10 Top 50 

Max 95% 62% 
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Min 25% 30% 

 

Table 54 shows the Equivalence testing results for "Top 10" and "Top 100". According to the T-

Test results (P-value = 0.3420), there was no difference between two subsets of features. Based on 

the Equivalence testing results, we considered "Top 10" better than "Top 100", because the 

maximum interval of "Top 10" was much higher than "Top 100", while the minimum of "Top 10" 

was not much smaller than "Top 100". Thus, we consider "Top 10" had better performance than 

"Top 100". 

Table 54 - Equivalence testing results for top 10 and top 100 of 20 recent tweets 

 Top 10 Top 100 

Max 95% 67% 

Min 25% 33% 

 

Table 55 shows the Equivalence testing results for "Top 10" and "CFSSubset". According to the 

T-Test results (P-value = 0.4078), there was no difference between the two subsets of features. 

Based on the maximum interval, it can be seen that "Top 10" had a higher result than "CFSSubset", 

while the minimums of the two subsets of features were the same. Therefore, we consider "Top 

10" had a better performance than "CFSSubset". 

Table 55 - Equivalence testing results for top 10 and cfssubset of 20 recent tweets 

 Top 10 CFSSubset 

Max 95% 85% 

Min 25% 25% 

 

50 Recent tweets 

Table 56 shows the TP rate results for spammers between the different subsets of features for 50 

recent tweets. Based on the ANOVA results, there was no significant difference at 95% confidence 

level between the nine subsets of features (P-value = 0.0511), therefore we did not  perform the T-

Test. 

 
Table 56 - The results of the subset of features for 50 Recent Tweets 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

50RT 

NB 66% 0% 97% 92% 66% 66% 58% 75% 30% 

SMO 45% 0% 0% 0% 50% 15% 37% 45% 22% 

IBK 24% 22% 20% 62% 24% 42% 34% 38% 68% 

J48 43% 26% 20% 61% 43% 67% 52% 48% 80% 

RF 33% 22% 11% 65% 33% 57% 41% 34% 80% 
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Table 57 show the Equivalence testing results of the subset of features from 50 recent tweets. It 

can be seen that the maximum TP rate of "Top 10" was higher than the others. However, the 

minimum rate just higher than "Top 1" and "Top 5", but it was not very lower comparing to the 

other subset of features. Therefore, we consider the "Top 10" as the optimisation subset of features. 

Table 57 - Equivalence testing results for the subset of features of 50 recent tweets 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50  Top 100 

CFS-

50RT 

Max 58% 26% 68% 89% 59% 70% 54% 64% 83% 

Min 26% 1% 0% 22% 27% 28% 34% 31% 29% 

 

100 Recent tweets 

 

Table 58 shows the TP rate results for spammers between the different subsets of features for the 

100 recent tweets. The ANOVA results show that there was a significant difference at 95% 

confidence level between the subset of features (P-value = 0.0005), therefore we need to perform 

the T-Test. 

Table 58 - The results of the subset of features for 100 Recent Tweets. 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

100RT 

NB 60% 0% 11% 81% 39% 53% 55% 66% 48% 

SMO 68% 0% 0% 0% 14% 17% 49% 68% 31% 

IBK 12% 15% 19% 100% 33% 100% 25% 17% 100% 

J48 49% 24% 26% 100% 69% 100% 50% 52% 100% 

RF 23% 15% 17% 100% 71% 100% 35% 30% 100% 

 

Table 59 shows the Equivalence testing results for "All Features" and "Top 1". According to the 

T-test results (P-value = 0.0133), there was a signficant difference between the two subsets of 

features. It can be seen that  "All Features" had a better performance than "Top 1", because the 

maximum and the minimum intervals of "All Features" were higher than "Top 1". Thus, we 

consider "All Features" better than "Top 1". 

Table 59 - Equivalence testing results for all features and top 1 of 100 recent tweets 

 All Features Top 1 

Max 67% 21% 

Min 18% 0% 

 

Table 60 shows the Equivalence testing results for "All Features" and "Top 5". According to the 

T-test results (P-value = 0.0210), there was a signficant difference between the two subsets of 

features. It can be seen that  "All Features" had a better performance than "Top 5", because the 
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maximum and the minimum intervals of "All Features" were higher than "Top 1". Thus, we 

consider "All Features" as the optimisation subset of features. 

Table 60 - Equivalence testing results for all features and top 5 of 100 recent tweets 

 All Features Top 5 

Max 67% 24% 

Min 18% 4% 

 

Table 61 shows the Equivalence testing results for "All Features" and "Top 10". According to the 

T-test results (P-value = 0.0863), there was no signficant difference between the two subsets of 

features. It can be seen that "Top 10" had better performance than "All Features", because the 

maximum and the minimum intervals of "Top 10" were higher than "All Features". Thus, we 

consider "Top 10" as the optimisation subset of features. 

Table 61 - Equivalence testing results for all features and top 10 of 100 recent tweets 

 All Features Top 10 

Max 67% 119% 

Min 18% 33% 

 

Table 62 shows the Equivalence testing results for "Top 10" and "Top 20". According to the T-

test results (P-value = 0.4669), there was no signficant difference between the two subsets of 

features. It can be seen that the maximum and the minimum intervals of "Top 10" and "Top 20" 

were about the same, but the maximum intervals of "Top 10" was slightly higher than "Top 20". 

Thus, we consider "Top 10" as the optimisation subset of features. 

Table 62 - Equivalence testing results for top 10 and top 20 of 100 recent tweets 

 Top 10 Top 20 

Max 119% 111% 

Min 33% 37% 

 

Table 63 shows the Equivalence testing results for "Top 10" and "Top 50". According to the T-

test results (P-value = 0.0682), there was no signficant difference between the two subsets of 

features. It can be seen that the maximum and the minimum intervals of "Top 10"  was higher than 

"Top 50". Therefore, we consider "Top 10" as the optimisation subset of features. 

Table 63 - Equivalence testing results for top 10 and top 50 of 100 recent tweets 

 Top 10 Top 50 

Max 119% 55% 

Min 33% 30% 

 

Table 64 shows the Equivalence testing results for "Top 10" and "Top 100". According to the T-

test results (P-value = 0.1062), there was no signficant difference between the two subsets of 
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features. It can be seen that the maximum and the minimum intervals of "Top 10"  was higher than 

"Top 100". Therefore, we consider "Top 10" as the optimisation subset of features. 

Table 64 - Equivalence testing results for top 10 and top 100 of 100 recent tweets 

 Top 10 Top 100 

Max 119% 69% 

Min 33% 24% 

 

Table 65 shows the Equivalence testing results for "Top 10" and "CFS-100RT". According to the 

T-test results (P-value = 0.1062), there was no signficant difference between the two subsets of 

features. It can be seen that the maximum interval "Top 10"  was higher than "CFS-100RT", while 

the minimum interval of "Top 10" was not very low than "CFS-100RT". Therefore, we consider 

"Top 10" as the optimisation subset of features. 

Table 65 - Equivalence testing results for top 10 and cfssubset of 100 recent tweets 

 Top 10 CFS-100RT 

Max 119% 108% 

Min 33% 42% 

 

150 Recent tweets  

 
Table 66 shows the TP rate results for spammers between the different subset of features for the 

150 recent tweets. The ANOVA results show that there was no significant difference at 95% 

confidence level between the subset of features (P-value = 0.3443), so it is not needed to perform 

the T-Test. 

Table 66 - The results of the subset of features for 150 Recent Tweets. 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

150RT 

NB 63% 0% 19% 61% 42% 67% 62% 61% 42% 

SMO 33% 0% 0% 0% 14% 14% 12% 25% 22% 

IBK 15% 90% 14% 13% 66% 48% 15% 15% 73% 

J48 34% 20% 44% 37% 56% 49% 57% 52% 52% 

RF 34% 90% 15% 40% 62% 57% 46% 30% 74% 

 

Table 67 show the Equivalence testing results of the subset of features from 50 recent tweets. It 

can be seen that the maximum and the minimum interval of "Cfssubset-150RT" was higher than 

the others. Therefore, we consider the "CFS-150RT" as the optimisation subset of features. 

Table 67 - Equivalence testing results for the subset of features of 150 recent tweets 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50  Top 100 

CFS-

150RT 
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Max 53% 86% 34% 54% 69% 66% 61% 55% 74% 

Min 19% 0% 2% 6% 26% 27% 14% 17% 30% 

 

200 Recent tweets 
 

Table 68 shows the TP rate results for spammers between the different subsets of features from 

the 200 recent tweets. The ANOVA results show that there was a significant difference at 95% 

confidence level between the four subsets of features (P-value = 1.2315E-05), so we needed to 

perform a T-Test between each subset.  

Table 68 - The results of the subset of features for 200 Recent Tweets 

 
All 

Features 
Top 1 Top 5 Top 10 Top 15 Top 20 Top 50 Top 100 

CFS-

200RT 

NB 60% 0% 13% 23% 39% 72% 58% 55% 41% 

SMO 33% 0% 0% 0% 13% 13% 37% 32% 23% 

IBK 16% 21% 10% 21% 53% 29% 34% 20% 79% 

J48 54% 21% 15% 26% 56% 56% 52% 52% 58% 

RF 28% 21% 10% 22% 63% 57% 41% 35% 71% 

 

Table 69 shows the T-Test showed a significant difference (P-value = 0.0139) between "All 

Features" and "Top 1". We consider that "All Features" had a better performance than "Top 1 

because the maximum and minimum of "All Features" was higher than "Top 1". 

Table 69 - Equivalence testing results for All Features and Top 1 of 200 recent tweets 

 All Feature Top 1 

Max 57% 12% 

Min 20% 10% 

 

Table 70 shows the results of Equivalence testing for “All Feature” and “Top 5”. The T-Test 

showed significant differences (P-value = 0.0049) between "All Features" and "Top 5". The 

maximum and minimum of "All Features" was higher than "Top 5". Thus, we consider that "All 

Feature" was better than "Top 5". 

Table 70 - Equivalence testing results for All Features and Top 5 of 200 recent tweets 

 All Feature Top 5 

Max 57% 15% 

Min 20% 30% 

 

Table 71 shows the Equivalence Testing results for “All Feature” and “Top 10”. According to the 

T-Test results, there were differences (P-value = 0.0325) between "All Features" and "Top 10". 

The maximum and minimum of “All Feature” were much higher than “Top 10”, so we consider 

that "All Features" had better performance than "Top 10".  
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Table 71 - Equivalence testing results for All Features and Top 10 of 200 recent tweets 

 All Feature Top 10 

Max 57% 28% 

Min 20% 70% 

 

Table 72 shows the Equivalence Testing results for “All Feature” and “Top 15”. According to the 

T-Test results (P-value = 0.3127), there was no difference between the two subsets. However, 

“Top 15” had a higher maximum and minimum interval than “All Feature”, therefore, we consider 

“Top 15” as the optimisation subset of features. 

Table 72 - Equivalence testing results for All Feature and Top 15 of 200 recent tweets 

 All Feature Top 15 

Max 57% 63% 

Min 20% 25% 

 

Based on Table 73, the T-Test results (P-value = 0.3524) showed that there was no difference 

between the two subsets of features. According to the Equivalence Testing results, “Top 15” 

achieved higher performance than “Top 20”. Thus, we chose “Top 15” as the optimisation subset 

of feature. 

Table 73 - Equivalence testing results for Top 15 and top 20 of 200 recent tweets 

 Top 15 Top 20 

Max 63% 68% 

Min 25% 22% 

 

Based on Table 74, the T-Test shows that there was no difference (P-value = 0.4844) between 

"Top 15" and "Top 50". It can be seen that the maximum of “Top 15” was higher than “Top 50”, 

while their minimum was the same, thus we chose “Top 15” subset of feature for the next test. 

Table 74 - Equivalence testing results for Top 15 and Top 50 of 200 recent tweets 

 Top 15 Top 50 

Max 63% 54% 

Min 25% 34% 

 

Table 75 shows the equivalence testing results (P-value = 0.3001) for “Top 15” and “Top 100” of 

200 recent tweets. It can be seen that the maximum of “Top 15” was higher than “Top 100”, while 

they had the same minimum. Thus, we consider “Top 15” was better than “Top 100”. 

Table 75 - Equivalence testing results for top 15 and top 100 of 200 recent tweets 

 Top 15 Top 100 

Max 63% 53% 

Min 25% 24% 
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Table 76 shows the Equivalence testing results (P-value = 0.2481) for “Top 15” and “CfsSubset” 

of 200 recent tweets. The T-Test shows that there was no difference between them. But the 

“CfsSubset” had better performance than “Top 15” as the maximum and the minimum was higher 

than “Top 15”. 

Table 76 - Equivalence testing results for top 15 and top cfssubset of 200 recent tweets 

 Top 15 CfsSubset 

Max 63% 76% 

Min 25% 32% 

 

Based on the T-Test results from Tables 54 to 61, the "CFSSubset" had better performance overall 

because the maximum and minimum interval was higher than the others. So we consider the 

"CFSSubset" to be the optimised subset of features for 200 recent tweets. 

The comparison between ASDF model and existing systems 
 

Precision 
 

Table 77 shows the Precision of our system and the others. Based on the ANOVA results, it shows 

that there was a significant difference at 95% confidence level between the system (P-value = 

0.0070), so it was necessary to perform T-Test. 

Table 77 - Precision of our proposed system with the other systems  

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 17% 30% 0% 10% 37% 68% 38% 25% 28% 17% 30% 

SMO 0% 72% 0% 0% 38% 80% 73% 0% 100% 0% 72% 

IBK 100% 36% 56% 13% 53% 43% 50% 64% 44% 100% 36% 

J48 100% 36% 20% 13% 56% 39% 49% 77% 56% 100% 36% 

RF 100% 71% 67% 8% 65% 61% 76% 88% 69% 100% 71% 

 

Table 78 shows maximum and the minimum interval Precision of the systems. Our system 

achieved maximum 113% precision, which was a higher result than the others. But the minimum 

was lower compared to most others. However, our maximum precision was generally much higher 

than the others, therefore we consider our system outperformed them in term of precision. 

Table 78 - Equivalence Testing results of Precision 

 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 113% 69% 75% 14% 61% 75% 73% 87% 86% 27% 75% 
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Min 12% 28% 3% 3% 37% 41% 40% 13% 32% 5% 31% 

 

Recall 
 

Table 79 shows the Recall of our system and the others. Based on the ANOVA results, it shows 

significant differences at 95% confidence levels between the systems (P-value = 0.0003), so it was 

necessary to perform T-Test.  

Table 79 - Recall of our proposed system with the other systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 81% 25% 0% 11% 62% 30% 54% 36% 35% 43% 34% 

SMO 0% 14% 0% 0% 38% 10% 22% 0% 13% 0% 13% 

IBK 100% 32% 54% 14% 27% 42% 36% 55% 41% 22% 34% 

J48 100% 46% 46% 17% 65% 36% 61% 76% 57% 27% 46% 

RF 100% 40% 59% 4% 34% 39% 35% 73% 45% 14% 66% 

 

Table 80 shows the maximum and minimum interval Recall of the systems. It can be seen that our 

system had the highest maximum and minimum compared to the other systems. Therefore, in term 

of Recall, we consider that our system had a better performance than other existing systems. 

Table 80 - Equivalence Testing results of Recall 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 119% 43% 61% 16% 62% 44% 57% 79% 54% 37% 57% 

Min 32% 18% 2% 2% 28% 18% 25% 16% 21% 50% 19% 

 

F-measure 
 

Table 81 shows the F-Measure of our system and the others. Based on the ANOVA results, it 

shows significant differences at 95% confidence levels between the systems (P-value = 0.0001), 

so we have used T-Test and the results show that only Alonso's system was significantly different 

to our system (P-value = 0.03). 

Table 81 - F-Measure of our proposed system with the other systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

NB 28% 28% 0% 10% 46% 41% 45% 30% 31% 16% 31% 

SMO 0% 24% 0% 0% 38% 18% 33% 0% 22% 0% 19% 

IBK 100% 34% 55% 14% 35% 43% 42% 59% 43% 22% 46% 

J48 100% 41% 57% 15% 60% 37% 55% 77% 56% 27% 49% 

RF 100% 51% 63% 6% 45% 47% 48% 80% 55% 17% 73% 
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Table 82 shows the maximum and minimum interval F-Measure of the systems. The maximum F-

Measure of our system achieved 113%, which was much higher than the others. But our minimum 

achieved only 17%, which was lower than most other systems. However, our maximum interval 

is 113%, while the other systems were about 15% to 83%, which was much lower than our 

proposed system, therefore we consider our proposed system outperformed the others. 

Table 82 - Equivalence Testing results of F-Measure 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 113% 46% 67% 15% 54% 48% 52% 83% 56% 26% 63% 

Min 17% 24% 2% 2% 35% 25% 36% 15% 26% 6% 23% 

 

Accuracy 
 

Table 83 shows the Accuracy of our system and the others. Based on the ANOVA results, it shows 

no significant difference at 95% confidence level between the systems (P-value = 0.5326), so there 

was no T-Test required. The SMO achieved 88% accuracy. However, it was still lower than the 

other systems. The IBK, J48 and RF still performed very well compared to the other systems. 

Table 83 - Accuracy of our proposed system with the other systems 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 
 

NB 51% 90% 89% 84% 88% 91% 89% 88% 89% 65% 83% 
 

SMO 88% 93% 89% 92% 90% 91% 93% 93% 93% 91% 88% 
 

IBK 100% 90% 90% 85% 92% 89% 92% 94% 92% 87% 91% 
 

J48 99% 90% 92% 84% 93% 88% 91% 96% 93% 88% 90% 
 

RF 100% 94% 92% 88% 93% 91% 93% 97% 94% 89% 94% 
 

 

Table 84 shows the equivalence testing results for Accuracy of the systems. The ASDF achieved 

maximum of interval is 100% while the minimum was only 66%. However, it seems like [40] 

approach had better performance than our approach because the maximum accuracy for [40] was 

97%, which was almost 100% and the minimum was 90%, which was much higher than the ASDF. 

Therefore, in term of accuracy, [40] approach performed better than the ASDF.  

Table 84 - Equivalence Testing results for Accuracy 

 ASDF [6] [1] [14] [7] [43] [15] [40] [44] [11] [10] 

Max 100% 93% 91% 90% 93% 91% 93% 97% 94% 94% 93% 

Min 66% 89% 88% 83% 89% 88% 89% 90% 90% 73% 85% 

 








