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Abstract: The invasive species Erigeron karvinskianus or Mexican daisy is considered a significant weed
that impacts native forest restoration efforts in New Zealand. Mapping the potential distribution of
this species under current and future predicted climatic conditions provides managers with relevant
information for developing appropriate management strategies. Using occurrences available from
global and local databases, spatial distribution characteristics were analyzed using geostatistical
tools in ArcMap to characterize current distribution. Species distribution modeling (SDM) using
Maxent was conducted to determine the potential spatial distribution of E. karvinskianus worldwide
and in New Zealand with projections into future climate conditions. Potential habitat suitability
under future climatic conditions were simulated using greenhouse gas emission trajectories under the
Representative Concentration Pathway (RCP) models RCP2.6, RCP4.5, RCP6.0 and RCP8.5 for years
2050 and 2070. Occurrence data were processed to minimize redundancy and spatial autocorrelation;
non-correlated environmental variables were determined to minimize bias and ensure robust models.
Kernel density, hotspot and cluster analysis of outliers show that populated areas of Auckland,
Wellington and Christchurch have significantly greater concentrations of E. karvinskianus. Species
distribution modeling results find an increase in the expansion of range with higher RCP values,
and plots of centroids show a southward movement of predicted range for the species.
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1. Introduction

Mexican Daisy (Erigeron karvinskianus DC.) is reported as an invasive plant species throughout
warm-temperate, subtropical and tropical parts of the world [1], including India [2], Africa [3],
Australia [4], Japan [5], northwest Himalayas [6] and Europe [7,8]. Classified as an invasive weed,
it is an identified problem in Hawaii [9,10], La Réunion [11] and New Zealand [12,13]. The species
was first recorded in New Zealand in 1940 [12,13] and is now found to be established and thriving in
North Island, South Island and Stewart Island [13,14], with numerous patches found in the relatively
populated Auckland Region [12,15].

The species is known to be associated with anthropogenic disturbance, particularly in habitats
such as rock walls, archaeological sites, roadside banks, and wasteland [1,4,8,13,16–18] but is also
increasingly invading native ecosystems including native and replanted forests, wetlands and riparian
zones [11,16,19]. It can form dense mats that can rapidly stifle young plants [1,9], with serious
impacts on projects involving revegetation or replanting of areas. This in turn may require significant
resources for clearing, preparation and maintenance to ensure the growth and survival of replanted
species. The plant’s ability to spread at a rapid rate when introduced further increases its importance in
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ecological restoration efforts [13]. Characteristics of the Mexican daisy that enhance the risk of invasion,
establishment and spread into unoccupied areas include wide climatic tolerance [1,2], abundant seeds
highly suitable for wind dispersion or other transport vectors [1] and potential reproduction via
adventitious rooting of stem fragments [1]. These factors improve its ability to adversely affect
regenerating forests [19], which is a major concern in New Zealand.

New Zealand is an isolated archipelago with unique endemic flora and fauna threatened by
the establishment and spread of highly invasive species [20]. The great value the country exerts in
protecting its remaining biodiversity resulted in efforts to address the presence of weeds and the
prevention of their establishment and diffusion. At the national level, the Department of Conservation
lists the Mexican daisy as an unwanted organism, belonging to Category C of weeds characterized as
“potentially troublesome that should not be spread” with “small infestations requiring removal” and
is listed on the National Pest Plant Accord (NPPA) as an Unwanted Organism [21]. This classification
formally describes the Mexican daisy as a threat to grassland, riverbank and cliff ecosystems [22].
At local or regional levels, policy instruments such as the Regional Pest Management Strategies were
developed and enacted by Regional Councils to deal with biosecurity issues including weeds [23].
In the Auckland Region, the Mexican daisy is listed as a Surveillance species, a classification identifying
the plant as a potential threat to the biodiversity of the area, with prohibitions on its distribution,
sale and propagation to prevent establishment and diffusion [24]. Action recommended for initial
patches is immediate removal or eradication [25].

It is recognized that weeds such as the Mexican daisy are capable of rapid shift ranges,
adaptability and easy establishment [26]. To describe the current range of the plant, spatial distribution
characteristics of the Mexican daisy at global, country and local area extents were mapped using
ArcMap v10.5.2 and geostatistical tools used for analysis of occurrence data. The global map of
current distribution and results of spatial analysis provide an overview of its native and invaded
range as well as spatial information comparing distribution between different countries and regional
areas of concern. Worldwide patterns of distribution, when presented as hotspots or clustering,
provide countries, regions or organizations with initial risk assessments associated with invasive
species and may also identify invasive pathways [27]. The plant’s highly invasive characteristics
are worsened by the availability of propagules throughout most of New Zealand as well as constant
disturbances such as anthropogenic, soil and vegetation cover changes that facilitate establishment [27].
Predicting and mapping the potential distribution of such an invasive species under current and future
predicted climatic conditions will provide the country’s national and local managers with relevant
information and knowledge for project planning, development of relevant strategies and management
protocols [28–30].

Species distribution modeling (SDM) was used to determine the future habitat suitability
distribution of important invasive species from a worldwide distribution to a smaller country
or region [31–33]. Relevant SDM of invasive plants includes work done in the Himalayas [34],
Czech Republic [35], United States [36], Canada [37] Australia [38] and New Zealand [39], among
others. The resulting models and maps of predicted suitability provide valuable information that
allows for the focus of attention on identified geographical areas and determines effects of relevant
environmental variables. Such modeling provides knowledge for subsequent efforts in mitigating
impacts brought about by the invasive species, particularly changes in range, movement into novel
territories with implications on native species, habitats and resources required for addressing the
impacts of the weed. This project was aimed at determining the spatial characteristics of the Mexican
daisy, using global and local distribution data as well as relevant environmental data as input to
several spatial modeling tools to describe current distribution and assess future potential range in
New Zealand.
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2. Materials and Methods

Occurrence data were sourced from the Global Biodiversity Information Facility (GBIF; http:
//data.gbif.org). As a database with data sourced from a wide variety of museums, projects, networks
and herbaria worldwide with varying collection quality, there are recognized challenges in its use
for SDM [40]. However, the ability to access and download a set of global georeferenced species
occurrences makes it a valuable resource, particularly for species with no other alternative source
of information. The downloaded distribution data were checked for consistency, and redundant,
unnecessary and non-georeferenced data were removed. The processed Microsoft Excel data were
imported into ArcMap, and the resulting distribution map was used for checking obvious errors such
as redundancies and data at improbable locations, such as bodies of water or extreme latitudes.

Using the Kernel Density tool of ArcMap, a density map was created to show areas where there are
greater concentrations of reported occurrences. This tool calculates magnitude of occurrences per unit
area and fits a suitably smooth surface over the extent of input data points using the distances between
each location. The raster output surface aids the visualization of the distribution by highlighting areas
that have much greater or much lower concentration of occurrences. A planar method for generating
the surface was the option used in the calculations [41,42].

The Getis-Ord Gi* [43,44] statistic implemented in the Optimized Hotspot tool of ArcMap
determined characteristics of occurrences in terms of statistically significant intensities of occurrence
points. The Hotspot tool aggregates occurrences into uniformly-sized cells and calculates the z-statistic
with an accompanying p-value that indicates whether the cells are hotspots, coldspots or have no
significance. Positive z-statistics identify cells that have high numbers of occurrences, and designates
them as hot spots when the p-value is significant [45]. At the opposite scale, cells with negative
z-statistics represent low numbers of occurrences and are designated as cold spots if the calculated
p-value is significant [45]. To characterize the neighborhood and identify areas with characteristics
of statistically significant outliers in the occurrence cells, the Optimized Cluster and Outlier tool
of ArcMap that implements Anselin’s Local Moran’s I [46] was used. This tool produces cells that
aggregate occurrences and use counts per cell as the variable to determine a z-score to depict outlier
significance. High or low values of z-scores result in cells depicted as High-High or Low-Low cells
in the map. Other results include the Low-High and High-Low cells showing the nature of the
surrounding cells in relation to each other. Cells not determined by the tool to have statistically
significant outliers are characterized as not significant [47].

Species distribution modeling requires a set of occurrence data and environmental variables as
input. The tool Maxent (v3.4.1), implementing the maximum entropy machine learning approach,
was used. Maxent is a popular tool finding widespread usage because of its performance compared
to other approaches [48,49]. Maxent is based on maximum entropy that calculates inferences
or predictions even under conditions where the information is not complete [50–52]. In SDM
applications, the maximum entropy approach estimates a target distribution by calculating the
probability distribution that is nearest to a uniform one under constraints determined from available
data [50]. Significant applications of Maxent for modeling plant invasive species include modeling of
invasive trees worldwide [53], invasive weeds in Australia [30], the Chinese fan palm [39], and the
tallow tree in the Himalayas [54].

Environmental data consisted of rasters available from the WorldClim (v1.4) database that consist
of 19 Bioclim environmental variables (http://worldclim.org) [55] commonly used for SDM in a
wide variety of applications [56–58]. Current Bioclim rasters (averaged between 1960 and 1990) and
available future climatic data were downloaded for 2050 and 2070 at 30-second resolution (http:
//www.worldclim.org/CMIP5v1). These future climatic data describe different levels of greenhouse
gas trajectories as defined in the 5th IPCC report. The downloaded raster files represent Representative
Concentration Pathways (RCP) with values of 2.6, 4.5, 6.0, and 8.5 (higher numbers represent greater
greenhouse gas emissions, with RCP2.6 resulting in global warming by less than 2 degrees and RCP8.5
likely to lead to 4 degrees warming by 2100) for the years 2050 and 2070 [59].

http://data.gbif.org
http://data.gbif.org
http://worldclim.org
http://www.worldclim.org/CMIP5v1
http://www.worldclim.org/CMIP5v1
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The downloaded occurrence data were rarefied using the SDMToolbox v2.2 [60] in ArcMap with
multiple presence points within specified range distances reduced to a single representative occurrence
in order to minimize spatial autocorrelation which can affect model robustness [44,61,62]. Five sets of
occurrence data were generated consisting of rarefied sets at distances of 1, 5, 10, 20, 50, and 100 km
between samples. Each rarefied set was modelled in preliminary Maxent runs to determine which
data set to use based on its AUC [63] performance for both worldwide and New Zealand occurrence
data sets. The higher AUC score was used to select the rarefied data set for the global model, whereas
for the New Zealand model, the minimal difference in AUC between the 1 km and 5 km resolutions
resulted in the decision to use the 5 km data with a smaller number of samples to further minimize
spatial autocorrelation [39]. The sample sizes for both models are also well above the minimum of
30 (Table 1) recommended for a range of SDM algorithms [64]. Maxent outputs a suitability map by
modeling the distribution of a specific species with a selected number of environmental variables.
The worldwide model was used to determine the non-correlated variables to be used for the New
Zealand model. The New Zealand current model in turn was projected into future environmental
conditions using RCP bioclimatic rasters. The Minimum Training Presence (MTP) threshold rule was
applied in order to produce a binary raster representing the presence/absence or range of a species [65].
The MTP as a threshold in Maxent was used [66–69] primarily because of its representation of the
simple interpretation of an ecological relationship between areas that are at least suitable to locations
where presence is recorded. Results of the preliminary Maxent run identified the 100 k data set as most
suitable for the global model and the 5 k data set for the New Zealand model (Table 1).

Table 1. Area under the curve (AUC) values of different rarefication values for worldwide and New
Zealand Erigeron species distribution to identify correlated environmental variables.

Distance (km) World NZ

No. of Samples AUC No. of Samples AUC
1 3564 0.919 216 0.915
5 1232 0.934 127 0.914

10 1147 0.927 97 0.896
20 867 0.937 74 0.860
50 467 0.947 46 0.832

100 274 0.951 28 0.821

Bioclim rasters were further processed as it was expected that many of the climatic variables were
highly correlated [60], making it difficult to determine the effects of individual variables on the Maxent
model. These consisted of 19 parameters in Bioclim clipped to the New Zealand area and rasters
representing elevation (https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/)
and land cover (https://earthexplorer.usgs.gov/) [70,71], using the Biosphere 2 classification of 11
landcover types (1 Broadleaf Evergreen Trees; 2 Broadleaf Deciduous Trees; 3 Broadleaf and Needleleaf
Trees; 4 Needleleaf Evergreen Trees; 5 Needleleaf Deciduous Trees; 6 Short Vegetation/Grassland;
7 Shrubs with Bare Soil; 8 Dwarf Trees and Shrubs; 9 Agriculture/Grassland; 10 Water, Wetlands;
11 Ice/Snow) and human population (https://koordinates.com/from/datafinder.stats.govt.nz/layer/
8437/). Landcover, elevation and human population variables were included in the model together
with bioclimatic factors to determine their effects on the Maxent jackknife outputs. Elevation was
selected primarily because of observed range shifts towards higher elevation in climate changes
studies [72] and to show results of variable effects on the models in the jackknife of the Maxent
model while considering that New Zealand’s mountain areas contain significant habitats that may
be impacted. The values of the environmental variables at each occurrence point of the selected
rarefied data set were determined using the ArcMap tool Extract Multi-values from rasters (Table 2).
We used SDMtoolboxv2.2 in ArcMap to check for cross-correlation of all the environmental variables
at all occurrence points and determine which environmental variables to use based on the correlation
coefficient [60]. Variables not correlated at coefficient less than or equal to 0.7 were included and

https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/
https://earthexplorer.usgs.gov/
https://koordinates.com/from/datafinder.stats.govt.nz/layer/8437/
https://koordinates.com/from/datafinder.stats.govt.nz/layer/8437/


Climate 2019, 7, 24 5 of 20

further checked to include only those with a variance inflation factor (VIF) of less than 10 [73]. This is
consistent with results that show that using simpler models with a small number of variables improves
the results of projecting species distribution models [58,74–76]. Cross correlation of the Bioclim data
resulted in the 4 layers plus landcover, population and elevation selected for use in both the global
and New Zealand models (Table 2).

Table 2. Values of Bioclim measured at the occurrence points.

Layer Climatic Variable Minimum Maximum Mean Standard
Error

Standard
Deviation

*BIO1 Annual Mean Temperature 1.594 27.354 13.991 0.160 4.125

*BIO2

Mean Diurnal Range (Mean
of monthly (max
temperature–min

temperature))

4.863 18.540 9.700 0.102 2.634

BIO3 Isothermality (BIO2/BIO7)
(* 100) 0.239 0.913 0.482 0.006 0.152

BIO4 Temperature Seasonality
(standard deviation * 100) 0.001 0.029 0.013 0.000 0.006

BIO5 Max Temperature of
Warmest Month 13.400 37.236 24.955 0.151 3.906

BIO6 Min Temperature of
Coldest Month −9.371 19.048 4.138 0.182 4.702

BIO7 Temperature Annual Range
(BIO5–BIO6) 8.587 35.222 20.809 0.165 4.270

BIO8 Mean Temperature of
Wettest Quarter −3.399 29.053 13.334 0.227 5.867

BIO9 Mean Temperature of
Driest Quarter −5.387 26.571 14.703 0.230 5.936

BIO10 Mean Temperature of
Warmest Quarter 8.780 29.130 18.830 0.128 3.291

BIO11 Mean Temperature of
Coldest Quarter −5.392 26.286 9.213 0.217 5.604

*BIO12 Annual Precipitation 134.000 4330.000 1102.018 21.867 564.320

BIO13 Precipitation of Wettest
Month 6.894 169.847 36.987 0.946 24.404

BIO14 Precipitation of Driest
Month 0.000 64.178 9.243 0.269 6.938

*BIO15 Precipitation Seasonality
(Coefficient of Variation) 0.067 1.258 0.411 0.011 0.284

BIO16 Precipitation of Wettest
Quarter 78.355 1852.770 431.371 10.458 269.901

BIO17 Precipitation of Driest
Quarter 0.629 949.616 142.521 3.829 98.828

BIO18 Precipitation of Warmest
Quarter 4.765 1278.280 268.646 7.392 190.758

BIO19 Precipitation of Coldest
Quarter 17.143 951.106 238.663 6.082 156.966

* used in the Maxent model.

The global and New Zealand species distribution models were run with the 100 k and 5 k
rarefied data sets, respectively. Environmental variables consisted of non-correlated current Bioclim
environmental layers BIO1 (Annual Mean Temperature), BIO2 Mean Diurnal Range (Mean of monthly
(max temperature–min temp)), BIO12 (Annual Precipitation), and BIO15 (Precipitation Seasonality
(Coefficient of Variation), elevation, land cover and human population. The New Zealand model was
projected into future climatic conditions using the downloaded RCP trajectories for the years 2050
and 2070.

Using raster calculations, subtracting the binary thresholded future rasters from current rasters
resulted in four categories: Expansion in range (absence in current, presence in future), no occupancy
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or (absence in both current and future), occupancy or continuing (presence in current and future) and
contraction in range (presence in current, absence in future). These resulting range maps provide
valuable insight into areas of the country where change in range occurs. The maps also show effects of
different RCP values on the range expansion or contraction of the species. The direction of presence area
centroid movement was determined in ArcMap, again using the tool Distribution Changes Between
Binary SDMs in the SDM toolbox. Centroid movements are plotted as vectors and represent the
magnitude and direction of the movement of predicted distribution ranges. Each centroid shift vector
was produced by pairwise subtraction between binary current and future rasters and also between the
2050 and 2070 binary rasters. The speed of the movement of the centroid is then calculated from the
length of the centroid shift and the time difference between each pair of presence/absence rasters.

3. Results

Global spatial distribution characterization showed most of the occurrences were found in the
southern region of Mexico, a large area of Europe, and the east coasts of Australia and New Zealand
(Figure 1). The Optimized Hotspot Tool in ArcMap depicted the native range of the plant in Mexico
and New Zealand as significant global hotspots. The rest of the world did not exhibit any significant
hotspots in the generated cells analyzed. In terms of the cluster and outlier characteristics of the global
distribution, the native range of the plant in Mexico showed several significant High-High cluster cells
as well as Low-High outlier characterized cells. New Zealand shows several Low-High outlier cells,
whereas a few High-Low outlier cells are found scattered over the world (Figure 2).
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Figure 2. New Zealand occurrences, kernel density surface, Hotspot, and Cluster and Outlier
Analysis maps.

For the New Zealand distribution, the downloaded occurrence data plus the survey in the
Auckland Region show that the Mexican daisy is currently prevalent in regions surrounding Auckland,
Wellington and Christchurch and scattered throughout the length of North Island, and South Island,
particularly at the northern end and in the Christchurch region (Figure 2). This is confirmed by kernel
density modeling that shows Auckland, Wellington, the top of South Island and Christchurch to have
higher densities. Areas at the eastern tip of North Island and the southwestern area of South Island
do not have reported occurrences and are excluded in the resulting kernel density raster (Figure 3).
Hotspot analysis using the Getis-Ord Gi* statistic show that the center of Auckland has statistically
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significant hotspots. Cluster and outlier analysis find Auckland with several significant Low-High
outliers. Several spots of High-Low outliers are found throughout North Island and only one High-Low
outlier cell in South Island was found (Figure 3).
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Figure 3. Occurrences, Hotspots and CLOA maps for Auckland.

Limiting the occurrence data set to the Auckland Region alone, there is a high density of
occurrences seen particularly around the western and coastal areas. When the Optimized Hotspot tool
was run, no significant hotspots were found in the distribution. Cluster and Outlier analysis, however,
finds High-Low clusters in the northern and western areas of the city (Figure 3).

Species distribution modeling results from global Maxent modeling with the selected data set
show the native range in Mexico and most reported invasive range of the species to be the most
suitable under current conditions. Further, a significant area of New Zealand was found to be
highly suitable. Coastal areas of Europe, the southern coast of Australia, the Japanese archipelago,
central China, the eastern United States and southeastern Central America are also highly suitable.
The presence/absence map that resulted with a threshold set at MTP level shows that a significant
area of the world is predicted to be favorable for its presence or can be considered as the range of the
species under current environmental conditions (Figure 4).
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Figure 4. Results of suitability mapping and prediction of presence absence using Maxent for the
100 km rarefied occurrence data and non-correlated variables.

For the New Zealand Maxent model, jackknife analysis of variable contributions shows that
human population has the greatest percentage contribution followed by land cover and BIO1 (average
annual temperature). However, when permutation importance is considered, BIO1 is more important,
followed by land cover and elevation. Response curves provide an idea of the variable value range
or category that results in the greatest model response. The response curve for BIO1 (annual average
temperature range) shows that the model has a higher response at the higher values of annual average
temperature. Middle values of BIO15 (Precipitation seasonality) and lower values of BIO2 (Mean
diurnal temperature range) also have more influence in the model. Lower elevations have greater
effect compared to higher elevations, whereas BIO12 (average annual rainfall) has the greatest effect
at lower averages, particularly when it is the only corresponding variable. For land cover, categories
1 (broadleaf evergreen forest) and 7 (shrubs with bare soil) consistently show greater effect in both
response graph types (Table 3).
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Table 3. Results of the jackknife of variable contributions and model response to the variables.

Variable
Percent

Contribution
Permutation
Importance

Response of Model to Variable

Model with all Variables Model with Only the
Corresponding Variable

Population 46 10.5
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Thresholded rasters show small differences between the current model and the future distribution
(Figure 6). A noticeable change in the predicted presence areas is found in the higher emission RCP8.5
for 2070 where large areas of North Island show a greater absence prediction compared to the rest of
the thresholded maps. The RCP4.5 and RCP6.0 maps show greater predicted absence areas compared
to the current habitat suitability map.
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When the change in range characteristics of the thresholded presence/absence maps is calculated
between current conditions and the RCP rasters for 2070, the contraction of the areas of species range
is less than the area expansion, except for RCP8.5, where the opposite is true. The increase in the
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expansion range is shown to be directly proportional with increasing RCP values, with RCP8.5 showing
an expansion in range almost double that of RCP2.6 (22,749 km2 vs. 12,089 km2). On the other hand,
the areas that contract in RCP8.5 are much greater than the other scenarios combined. There is also a
decrease in areas that show no change or presence in both rasters with the higher RCP values (Figure 7
and Table S1).
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Figure 7. Prediction of range expansion and contraction for the Representative Concentration Pathways
(RCPs) in 2070.

The range maps resulting from subtracting the thresholded future raster from the current raster
show that North Island becomes less favorable for the Mexican daisy by the year 2070 for all RCP
trajectories. An obvious range expansion in South Island is evident with increasing RCP values [77].
When centroid shifts were determined between the current and future as well as from 2050 to 2070
thresholded rasters, all shifts showed a movement and direction to the southwest, mainly along the
length of New Zealand’s longitudinal axis (Figure 8). The magnitude of the centroid shift is also greater
with higher RCP values, with RCP8.5 showing the highest magnitude. Centroid shifts for RCP4.5 is
greater than RCP2.6, with the year-current-to-2070 shift greater than the shift from current to 2050.
(Figure 8). When the range shift was calculated using the movement of the centroid, the values in were
0.57 km/year (RCP2.6), 0.85 km/year (RCP4.5), 1.06 km/year (RCP6.0) and 1.41 km/year (RCP8.5).
The range of this movement is greater than the post-glacial migration rate of 140 plants estimated at
values from 0.01 to 0.44 km/year, with a mean of 0.12 km/year [78].
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4. Discussion

This work produced maps depicting spatial distribution and potential suitability of the Mexican
daisy at global and New Zealand scales. The global maps show the widespread distribution of the
Mexican daisy at its native and invaded areas. Regions with similar temperatures to its native range
and coastal areas consistently show higher levels of suitability for the species. At a global scale,
New Zealand shows very high levels of suitability and predicted presence/absence for the species.
The species appears to be most prevalent in coastal regions; in addition to most of New Zealand it can
also be seen along the southern coast of Australia, South America, Japan, and some areas in Europe.
There are a few outliers where the species has been noted growing further inland, such as Africa and
China. Outside of its native range, Optimized Hot Spot Analysis as well as CLOA show that New
Zealand is the only country in the world with significant hotspots and significant outliers, a result
that may be due to the number of occurrences reported in GBIF and that could indicate an inherent
spatial bias due to uneven reporting [79]. This is also consistent with the country’s top 2 ranking in the
number of invasive species recorded [80].

Recognized qualifications relevant in the use of SDM [81,82] related to this effort include the
nature of occurrence data sourced from GBIF, use of a single performance metric in model evaluation
and model parameters that may need iterative values to produce better results. In the absence of any
other source of georeferenced location data, the rarefication and data processing conducted may also
be considered as a form of subsampling that preserves the extent and contribution towards better
predictive model [79] and removes some of the effects of sampling bias [83] because the source data
is sufficiently large [81]. Further work to improve this aspect of modeling is certainly warranted.
Using other evaluation metrics such as True Skills Statistics (TSS) and kappa [39,62] should increase
confidence in the selection of models. For the model parameters specifically on threshold choice,
related studies testing different threshold values derived from several model parameters such as
sensitivity and specificity show more superior threshold options than the one used in this study [84,85].
Other threshold options, such as the maximum sum of sensitivity and specificity, that were shown to
perform better [86,87] could therefore be tested and compared for use in future iterations of the species
distribution modeling for the Mexican daisy.
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Looking at the relationship between the distribution of the species at both global and New Zealand
scales can assist in managing the spread of the species within New Zealand. Currently the Mexican
daisy is growing in many major regions across the globe and New Zealand, most notably around the
major urban centers Auckland, Wellington, Christchurch and coastal regions of South Island. This is
consistent with the characteristic of the Mexican daisy in forest areas to be associated with the size
and proximity of settlements [18]. The modeling results provide information for conservation and
management planning for areas of considerable importance most likely to be impacted by the spread
and establishment of the species. The information inherent in the maps showing the geographical
distribution and results of the geostatistical processing in ArcMap as well as SDM provides graphical
knowledge contributing to the effectiveness of related control measures by providing a guide to areas
for focusing resources or prioritizing mitigation or eradication measures that are required [88]. Regions
with the higher current density show changes in suitability under future climatic conditions. Further
exploration of other environmental and even socio-economic characteristics in areas such as Auckland,
Wellington and South Island will refine the model and contribute to an increased understanding
of the species’ ability to establish, grow and spread successfully in these regions. The spread into
southern regions in New Zealand is of concern especially in novel areas where native plants are at risk
from the competition of the species invading its ecological niche and other associated impacts on the
conservation of biodiversity for New Zealand in general. The decrease in habitat suitability overall
is consistent with modeling work on invasive species in Australia that compares current and future
conditions of hundreds of invasive plants [89].

There is evidence that the species will increase its range in South Island, as well as regions in the
south of North Island. This is consistent with the report in the Himalayas that include the Mexican
daisy among 11 invasive species modeled similarly and depicting that such will spread to higher
elevation and latitudes with global warming [39]. Species distribution modeling predicts that the
Mexican Daisy will spread to other areas where it may not currently be a concern under conditions of
increasing greenhouse gas emissions.

This information will allow managers of those areas becoming more suitable, particularly in the
southern areas of the country, to prioritize or increase the risk rating of the Mexican daisy for their
respective regions. Conversely, in areas where the model shows a contraction of range, less focus on
the species would reduce its risk rating, providing information for allocating resources to other more
risky plants or organisms [90].

5. Conclusions

The results of this work provide an overview of the potential impacts and spread of the Mexican
daisy in New Zealand. The combination of geostatistical processing and SDM provided several
predictive maps that can be used to assesses measures for controlling the species. The resulting
maps provided clear indications where the species will most likely spread over the next several years,
primarily because of changing and warming climate regime as represented in the environmental
variables used. This provides a basis and starting point from which to formulate a management plan
and also point out for the need for additional research work, including enhancing the data needed for
more robust and relevant modeling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/7/2/24/s1,
Table S1: Calculated changes in expansion/contraction of the species in New Zealand.
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