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Introduction to Thesis 

The diaphragm is well known for its primary role as the principal muscle in normal 

ventilation or quiet breathing. Ventilation is the physical movement of a volume of gas into 

and out of the lungs, whereas respiration is specific to the gas exchange of oxygen and carbon 

dioxide across a membrane at a cellular level. When the diaphragm is not functioning 

effectively or efficiently, ventilation is always compromised. This is due to accessory 

muscles carrying out the role of ventilation with much less efficiency (Harper et al., 2013). It 

is thought that dysfunction of the diaphragm is an underappreciated cause of respiratory 

issues and bears substantial impact not just on an individual level but also carries 

socioeconomic burden (Courtney & Greenwood, 2009). Additionally, it is widely accepted 

that diaphragm dysfunction is a catalyst for a range of health complications in several other 

body systems (Courtney, 2009). Due to the important role the diaphragm plays in health, 

there have been many methods to try and measure the diaphragm in living humans, including 

manual assessment (Ludwig, 2013), magnetic resonance imaging (Kolář et al., 2009; Kotani 

et al., 2004), and sonography (Boon et al., 2013, Harper et al., 2013). This study reported in 

this thesis involves the use of sonography as a measure of diaphragm structure (muscle 

thickness), and function via consideration of contractility. 

 

 The first stage in assessing any structure is establishing sufficient reliability of the measuring 

tool, in this case ultrasound. The use of ultrasound imaging (USI) as a measurement tool has 

been extensively studied from the view of an experienced operator (Harper et al., 2013). 

However, to our knowledge reliability data has not been gathered for non-sonographers or 

less experienced operators in the context of measuring diaphragm thickness. As the efficacy 

of diagnostic ultrasound is very user dependent, the same high reliability statistics may not be 

extrapolated to this group of operators. 

 

Overview of the different modes of ultrasound and the gap in research 

There are two different modes of ultrasound that can be used for assessing the diaphragm, 

these are M-mode (DiNino et al., 2014) and B-mode (Boon et al., 2013). M-mode is a time 

motion display of the ultrasound wave, while B-mode or ‘brightness mode’, uses a linear 

array of transducers to scan through the body and is the most common mode of ultrasound for 

taking tissue thickness measurements. Several previous studies have used M-mode ultrasound 

to quantify diaphragm excursion and movement during tidal breathing (Brown, Tseng, 
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Mitchell & Ridley, 2018; Baria et al., 2014). There have also been several prior studies using 

B-mode ultrasound that have shown varying measurements of diaphragm muscle thickness at 

the zone of apposition. The zone of apposition is referred to as the point at which the 

diaphragm connects to the ribcage. The magnitude of muscle thickness at the zone of 

apposition is in the range of 1.7-2.2 mm (Gerscovich et al., 2001; McCool & Tzelepis, 2012). 

However, these studies had several limitations including insufficient sample size, unclear 

methodology, no ‘healthy’ participant identification criteria, and lack of stratification for age 

and gender. There have been two studies using B-mode ultrasound with large sample sizes 

that were used as the basis for the methods reported in the study reported in this thesis (Boon 

et al., 2013; Harper et al., 2013).  

 

A growing field within ultrasound is rehabilitative ultrasound imaging (RUSI). RUSI is 

designed to aid the rehabilitation of musculoskeletal disorders. It is evident, however, that 

there is no research that investigates the reliability of diaphragm measurements from the view 

of a non-sonographer. To explain further, there is an ever-growing number of healthcare 

practitioners wanting to add sonography as an adjunct to their already existing practice, as is 

seen in the increase in demand for RUSI (Kiesel et al., 2007; Teyhen & Koppenhaver, 2011).  

 

There is an evident gap in the literature, investigating reliability of diaphragm thickness 

measurements by a less experienced USI operator such as rehabilitation providers and 

manual therapist who wish to use these machines in their practice. To address this, the 

primary aim of the study reported in Section II of this thesis was, ‘To investigate the intra-

rater reliability of diaphragm thickness measurements utilising a USI when examined by a 

non-sonographer. A secondary aim was to establish whether diaphragm thickness in 

particular ‘contractility’, could be a measure of self-perceived breathing quality.    

 

The layout of this thesis is comprised of two main sections. Section 1, consists of a review of 

the literature, a detailed explanation of the anatomy of the diaphragm and its fascial 

connection. Further, different types of ultrasound will be reviewed, including an overview of 

the quality appraisal tools that form the methodology of a reliability study. Section 2, is the 

manuscript, where the methodology of this study is described. This section will provide the 

results of this study including a discussion of how they may be interpreted and applied in the 

real-world. 
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Literature Review 

 

Introduction to Literature Review: Overview  

In this review of the literature the relevant anatomy and physiology of the diaphragm and 

surrounding structures will be outlined, followed by an overview of the effects of ventilation 

on other body systems. Additionally, other relevant background information pertaining to this 

research will be discussed, such as, sonography applications including different variations 

and modes of ultrasound. This literature review will also cover what is already known about 

diaphragm contractility and how the thickness of diaphragm muscle changes between 

inspiration and expiration.  

 

The later part of the review will include recent literature on key studies reporting reliability of 

diaphragm thickness measurements and how they formed their methodology. This will then 

serve as a basis for the design for this study.  

 

Later, a review of ultrasound methodology and utility for the measurement of diaphragm 

thickness will be undertaken. Lastly, this literature review will include a discussion of quality 

appraisal tools that can be utilised to make reliability studies more robust. A review and 

appraisal of reliability research for the use of ultrasound methodology for both measurement 

of diaphragm thickness and blinding procedures, provides justification for the methods 

undertaken within reported study.  

 

Part A: Background 

 

The aim of this section is to give detailed descriptions of the anatomy of the diaphragm and 

the surrounding musculature including the relevant fascial systems. Additionally, we aim to 

give insight into the functions carried out by the diaphragm and its importance in maintaining 

homeostasis within multiple body systems. Subsequently, complications that arise when the 
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diaphragm is compromised will also be discussed. Finally, different methods of measuring 

the diaphragm, specifically in the field of USI will be reviewed.   
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1.2 Anatomy of the diaphragm muscle and its fascial connections 

1.2.1 Diaphragm 

The diaphragm is a dome-shaped musculotendinous structure which separates the thoracic 

and the abdominal cavities (Downey, 2011). The attachments of the diaphragm can be 

conveniently considered in three main parts; the sternal, costal, and lumbar portions. 

 

 

Figure 1: Inferior view of the diaphragm, showing its attachments and the structures that pass 

through it (Source: Wikimedia Commons 

https://commons.wikimedia.org/wiki/File:1113_The_Diaphragm.jpg). 

 

1.2.2 Diaphragm – sternal portion 

The sternal portion is made up of two small muscle bundles, which insert at the back of the 

xiphoid process near the apex creating two irregular openings in the retrosternal space known 

as, “the hiatus of Morgagni and Larrey”(Arráez-Aybar, González-Gómez, & Torres-García, 

2009). These openings are significant not only because this is an area where the diaphragm 

allows communication between the thoracic and abdominal cavities, in the sense that it 
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creates a window in which a transfer of forces and pressure can be transferred between the 

two cavities, but also where anteromedial and retrocostoxiphoid hernias can occur (Bordoni 

& Zanier, 2013).  

 

1.2.3 Diaphragm – costal portion 

The costal portion covers the most lateral aspect of the diaphragm, which originates on the 

inner and superior border of the lower six ribs including their cartilages, via individual 

interdigitations between the transversus abdominis muscle (Bordoni, Marelli, Morabito, & 

Sacconi, 2016).  

 

1.2.4 Diaphragm – lumbar portion 

The lumbar portion of the diaphragm derives from two crura which attach the diaphragm 

posteriorly to the lower thoracic and upper lumbar spine. The right and left crural arches are 

made up of three ligaments known as arcuate ligaments; medial, intermediate and lateral 

ligaments (Bordoni et al., 2016). The medial ligament bifurcates at the level of T11 creating 

the esophageal hiatus, carrying both the esophagus and vagus nerves, this arch is also called 

the median arcuate ligament. The thicker and longer right medial ligament, terminates on the 

anterior side of L2-L3 and occasionally to L4 as a broad tendon. Just lateral to this ligament 

is another smaller ligament known as the accessory medial ligament, which inserts between 

L1-L2 (Bordoni et al., 2016).  

 

1.2.5 Ligaments of the diaphragm and surrounding neurovascular structures 

The greater thoracic splanchnic nerve, and at times the lesser thoracic splanchnic nerve, pass 

through the small triangular opening created between the right medial and accessory medial 

ligaments, where they bend sharply to join the celiac ganglion (Gest & Hildebrandt, 2009). 

There is a similar situation on the other side of the abdominal aorta, where the left medial 

ligament terminates on the anterior bodies of L2-L3, it again has an accessory medial 

ligament which creates the passage for the greater and lesser thoracic splanchnic nerves on 

the left (Gest & Hildebrandt, 2009). The tendinous arc of the median arcuate ligament lies in 

front of T11 and is crossed anteriorly by the thoracic duct and aortic artery (Bordoni & 

Zanier, 2013). The lateral two ligaments also start here, before bifurcating into two separate 

tendons. The first being the medial arcuate ligament which arches over the psoas muscle and 

connects the body of the L1 vertebra to its transverse process. The lateral arcuate ligament 

inserts at the same transverse process before arching over the quadratus lumborum muscle 
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and terminating at the apex of rib twelve (Bordoni et al., 2016). All of the diaphragmatic 

musculature merges medially into a fibrous central tendon. The central tendon is a thin but 

strong aponeurotic sheet, which is typically described by most authors to resemble a 

‘cloverleaf’ or ‘trefoil’ shape with the three leaves decreasing in size from right to left 

(Anraku & Shargall, 2009; Downey, 2011), and more recently described by du Plessis et al., 

(2015) as being more ‘V-shaped’ in most people.  

 

1.2.6 Innervation of the diaphragm 

The innervation of the diaphragm is provided predominantly by the phrenic nerve which 

provides both sensory and motor function, however, the diaphragm has additional 

contributions from the vagus nerve (cranial nerve X) (Bordoni et al., 2016; Nason et al., 

2012). The phrenic nerve originates from the nerve roots of C3-C5 and is located posteriorly 

in the lateral compartment of the neck then transverses anteriorly into the thorax before 

running along the anterior surface of the pericardium until it reaches the diaphragm (Nason et 

al., 2012). 

 

1.3 Fascia definition 

Fascia is a sheet-like connective tissue that covers almost the whole body (Willard et al., 

2014). It provides many functions and provides significant peripheral information including, 

transferring load, encapsulating structures and providing both a nociceptive and 

proprioceptive role (Willard et al., 2014). There are many fascial systems within the body 

which provide a connection between two or more structures, creating a network between 

them. The fascial systems directly relevant to the diaphragm are the interfascial plane, the 

transversalis fascia, the thoracolumbar fascia and finally the lateral raphe.  

 

1.3.1 Fascial connections of the diaphragm; the interfascial plane & transversalis fascia 

The fascial system known as the interfascial plane starts at a retroperitoneal level, it connects 

the inferior vena cava, aortic system, psoas muscles, quadratus lumborum muscle, phrenic-

esophageal ligaments, liver and kidneys (Lee, Ku, & Rha, 2010). Laterally, another important 

fascial system worth considering is the transversalis fascia (Peiper, Junge, Prescher, Stumpf, 

& Schumpelick, 2004). This fascial system is a continuation of the endothoracic fascia and 

spans from the deep cervical fascia of the neck down to the pubis. Along its pathway it 

covers the transverse abdominis muscle, the edge of rectus abdominis, external oblique and 
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the inguinal canal but is also related to the pleura, pericardium and diaphragm (Bordoni & 

Zanier, 2013).  

 

1.3.2 Fascial connections of the diaphragm; thoracolumbar fascia & lateral raphe 

Another important fascial system is the thoracolumbar fascia, whose fascial planes unite 

together around the paraspinal muscles and include the trapezius muscle, latissimus dorsi, 

external oblique and gluteus maximus (Willard, Vleeming, Schuenke, Danneels, & Schleip, 

2012). The main function of this thick sheet of fascia which extends from the cervical region 

through to the sacral region is to stabilise the lumbosacral spine, posteriorly. Again, 

diaphragm dysfunction will negatively affect this fascia by altering the length of it through 

the contracting parts of the diaphragm, which in turn alters the force developed during 

contraction as well as the force transference across the fascial plane. This is where a change 

in the tension will ultimately affect its length and vice-versa and therefore also has an impact 

on the column of muscle being supported by it (Bordoni & Zanier, 2013). This has the 

potential to lead to both central and peripheral symptoms, such is seen in diaphragmatic 

causes of cervical pain (Bain & Harrington, 1983). Lastly, another part of the fascial system 

that interacts with the diaphragm is the lateral raphe. This fascial sling extends from the iliac 

crest up to the 12th rib and has two vital functions, it dissipates the tension created by the 

abdominal myofascial girdle across the thoracolumbar fascia and supports the contact of the 

quadratus lumborum muscle onto the transverse process of L2 (Schuenke, Vleeming, Van 

Hoof, & Willard, 2012).   

 

1.3.3 Pathological states of fascia 

Although the role fascia might play in creating a pathological environment is still unclear, it 

is assumed that when muscles are not able to slide freely within the encapsulating fascia, 

problems with the contractile pressures between the diaphragm and other trunk and perineal 

muscles arise, thereby, playing an indirect role in creating an abnormal physiological state 

(Bordoni & Zanier, 2013). 
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1.4 Function of the diaphragm  

The diaphragm has multiple and far reaching functions, with its primary role being the main 

muscle of ventilation. When the diaphragm contracts, its dome flattens and central tendon 

distends, which in turn draws the thoracic cavity inferiorly causing an increase in thoracic 

volume and decrease in intra-thoracic pressure (Merrell & Kardon, 2013). In accordance with 

Boyle’s law, which states that the pressure of an ideal gas is inversely proportional to its 

volume (P1V1 = P2V2) where P is the gas pressure and V the volume (Quanjer et al., 1993), 

the decrease in intra-thoracic pressure causes air to move into the lungs from the surrounding 

atmosphere, allowing gas exchange to occur. The pressure difference that the contracting 

diaphragm creates between the thoracic and abdominal cavities also provides a pump-like 

function that facilitates blood flow back to the heart and creates a negative pressure 

immediately inferior to it which provides support for abdominal organs and helps them stay 

in place (Hodges et al., 2005).   

 

1.4.1 Secondary roles of the diaphragm 

Apart from being the primary muscle of ventilation, the diaphragm also has other important 

roles. Specifically, the diaphragm has a role in posture by providing spinal stability through 

increasing intra-abdominal pressure (Bordoni et al., 2016). When the diaphragm contracts 

and descends, it exerts pressure down upon the pelvic floor and abdominals, increasing the 

pressure in the abdominal cavity and therefore opposing lumbar spine extension as well as 

intervertebral rotation and translation (Hodges et al., 2005).  

 

Not only does the diaphragm have a significant role in posture but also provides an anti-

reflux barrier by briefly ceasing contraction in order to allow the bolus to enter the stomach 

during swallowing but resisting stomach contents from going the other way, similar role to a 

one way valve (Pickering & Jones, 2002).  

 

In addition, the diaphragm is also directly involved in the mechanics of emesis by increasing 

gastric pressure in the retching phase and diverging around the oesophageal sphincter in the 

expulsive phase of vomiting (Pickering & Jones, 2002).   
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1.5 Breathing Dysfunction and Diaphragm Thickness 

Breathing is suggested to be dysfunctional when it is insufficient for adapting to 

environmental conditions and changing requirements of the individual (Courtney, 2009). 

There are many possible causes of dysfunctional breathing which include musculoskeletal 

dysfunction, presence of co-morbidity, chronic psychological stress and other factors that 

affect respiratory drive and control (Courtney, 2009). Two of the most common 

dysfunctional breathing patterns are hyperventilation and paradoxical breathing.  

 

1.5.1 Hyperventilation  

Hyperventilation is defined as respiration that exceeds metabolic demands, resulting in a 

decrease in arterial partial pressure of carbon dioxide (pCO2) and an increase in pH of the 

body fluids (respiratory alkalosis) (Hornsveld et al., 1996). If sustained for long enough, 

symptoms such as paraesthesis, trembling and dizziness ensue. This is often classified as 

hyperventilation syndrome (Lewis & Howell, 1986). There are certain diagnostic criteria 

developed to test for the presence of hyperventilation such as the hyperventilation 

provocation test (Hornsveld et al., 1996). This test works on the basis of voluntarily 

hyperventilating for several minutes and is considered positive if the induced symptoms are 

similar to those experienced in daily-life (Hornsveld & Garssen, 1997). Regardless of the 

efficacy of the test to diagnose hyperventilation syndrome, hyperventilation is a widespread 

health complication and has potential direct effects on the diaphragm muscle due to misuse.  

 

1.5.2 Paradoxical breathing 

Paradoxical breathing pattern is a reversal of a normal breathing pattern such that during 

inspiration the chest contracts and during exhalation the chest expands. Therefore, 

paradoxical breathing is a feature of impaired co-ordination between the chest wall and 

diaphragm. These complications are often a result of environmental factors but can also be a 

result of chest or rib deformities. 

 

1.5.3 Ventilated patients 

Mechanical ventilation is the act of assisting or replacing a person’s spontaneous breathing 

through artificial ventilation. For obvious reasons, an individual’s diaphragm becomes 

instantly less active as its role is now replaced by a machine. There is much debate on the 
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lasting impact a ventilator has on diaphragm muscle atrophy and thus thickness. One study by 

Goligher and colleagues (2015), tried to measure the evolution of the diaphragm thickness 

during mechanical ventilation. Their results showed that diaphragm thickness decreases 

rapidly even in the first few days after mechanical ventilation in more than 40% of 

participants (Goligher et al., 2015).  

 

1.5.4 Normal thickness 

There is no general consensus as to what the ‘normal thickness’ of the diaphragm is, or 

should be, within certain demographics. One study took diaphragm thickness measurements 

of 80 healthy subjects and found that the resting end expiration was 0.193 ± 0.044cm on the 

right side compared with 0.187 ± 0.039 cm on the left (Seok et al., 2017). 

 

1.5.5 Difference in diaphragm thickness and link to dysfunctional breathing 

A change in diaphragm thickness has been used as a measure of respiratory weakness and a 

sign of pathological change (Goligher et al., 2015; Ottenheijm, Heunks, & Dekhuijzen, 

2008). A thinning or atrophy of the diaphragm can be seen in patients with congenital 

illnesses such as muscular dystrophy, or neurological deficits such as phrenic nerve palsies, 

and even chronic disuse of the diaphragm as seen in mechanically ventilated patients 

(Goligher et al., 2015). In the case of ventilated patients, much of this decrease in diaphragm 

thickness is predicted to be a result of lower levels of inspiratory effort and therefore, 

changes in muscle configuration and loss of density (Goligher et al., 2015). When the 

diaphragm contracts it thickens as does any muscle when activated, therefore, the diaphragm 

is at its thickest state at full inhalation and thinnest during the relaxation of expiration. This 

thickening ratio between full inhalation and full exhalation is therefore a measure of 

diaphragm activity in breathing, and may provide another means of establishing 

dysfunctional breathing due to underuse of the diaphragm. A recent study has also described 

how body position (posture), influences diaphragm thickness (Hellyer et al., 2017). Using B-

mode ultrasound, Hellyer and colleagues (2017) measured diaphragm thickness in three 

different position; standing, sitting and supine. They found that the diaphragm is thicker 

when the body is more upright (standing and sitting versus supine). It is hypothesized this 

difference may be due to greater vertical gravitational load on the diaphragm and therefore, 

results in changes in the resting length of the muscle fibres (Hellyer et al., 2017). There is 

also extensive literature that a link between breathing dysfunction and diaphragm thickness 
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exists. A systematic review of 875 critically ill patients investigated the effectiveness of 

assessing diaphragmatic dysfunction utilising USI in these patients (Zambon et al., 2017). 

This systematic review also tries to establish, ‘optimal cutoffs’ for a healthy functional 

diaphragm in terms of diaphragm thickness measurements and contractility. These so called 

optimal cutoffs ranged from 10 to 14mm for excursion thickness and 30-36% for thickening 

percentage (contractility) (Zambon et al., 2017).     

 

1.6 Sonography Applications 

1.6.1 Ultrasound overview 

Ultrasound imaging is considered a safe and cost-effective method of medical imaging 

(Reißig & Kroegel, 2005). The advantage of ultrasound as an imaging technique is that it 

provides real-time in vivo feedback. Observing tissue actions and movements in real-time, 

gives the USI operator direct feedback which can aid diagnosis, therapeutic management plan 

and track rehabilitation.   

 

1.6.2 Ultrasound adverse effects  

Ultrasound does not involve any exposure to ionizing radiation and is therefore generally 

considered as a safe form of imaging. Historically, there has been some discussion of the 

effect of USI cells at a biological level, but this has been difficult to assess due in vitro testing 

methods (ter Haar, 2015). Additionally, normal clinical levels of USI exposure are 

considerably less than exposure levels utilized in research to determine whether sonography 

has any effect on a cellular level. Another potential adverse effect that can arise with USI is 

excess heat exposure which is known as the beam’s thermal bioeffects. However, modern 

ultrasound machines all display a thermal index (TI) when scanning, which notify the 

operator well before any potential tissue damage occurs (Nelson et al., 2009). USI exposure 

within a clinical medical setting is widely accepted as being safe (Reißig & Kroegel, 2005; 

Nomura & Nagdev, 2018). 

 

1.6.3 M-mode vs B-mode ultrasound 

Diagnostic ultrasound (also known as diagnostic sonography or ultrasonography) is a safe 

and cost effective method to see through many body layers in vivo and visualise what is 

occurring beneath the skin (Normura & Nagdev, 2018). The additional advantage of 

sonography over radiology is the ability to see soft tissue structures in real-time (Normura & 
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Nagdev, 2018). This is crucially important when measuring such a dynamic structure as the 

diaphragm. Sonographic evaluation of the diaphragm allows the user to objectively measure 

diaphragm thickness and the thickness ratio between inhalation and exhalation with a high 

degree of inter- and intra-rater reliability. There are two different methods of ultrasound 

available which are useful in different scenarios; B-mode (brightness mode) and M-mode 

(motion mode). M-mode ultrasound is used to pick up the amplitude and velocity of a 

specific organ or structures by taking several images in quick succession, comparable to 

creating a video in ultrasound. This imaging type has been used for imaging the diaphragm in 

the past but it has been primarily used in cardiac examination (Menegatti et al., 2014). With 

B-mode ultrasound an array of transducers simultaneously scan a body part which is 

displayed as a two-dimensional object. This allows better visualisation of the target organ and 

the ability to measure thickness of it accurately and therefore is the sonography method 

chosen in this study.  

 

1.6.4 Previous sonographic evaluation of the diaphragm  

Harper et al. (2013) set out to establish normal values of diaphragm contractility as assessed 

with B-mode ultrasound. Two examiners took diaphragm measurements from 150 healthy 

participants. Out of the 150 participants, 12 were used for inter-rater reliability and 10 for 

intra-rater reliability. One of the two examiners was an experienced sonographer with several 

years of measuring both normal and abnormal diaphragms. The experienced sonographer 

trained the other examiner for several weeks prior to the study. How many hours was put into 

training was not reported. The examiners took separate sets of images from participants on 

two separate days to establish both intra-rater and inter-rater reliability, however, the amount 

of time between re-test measurements was not reported. The diaphragm was identified by its 

typical 3-layered appearance, three images were then taken at the end of quiet expiration and 

quiet inspiration. The three measurements in each position were then used to calculate mean 

thickness measurements. A thickening ratio was then derived by dividing mean inspiration 

thickness measurements by mean expiration thickness measurements. Diaphragm thickness 

measurements ranged from 0.12 to 1.18 cm, with men having a slightly higher mean resting 

thickness. Inter-rater and intra-rater reliability were found to be very high. Inter-rater 

reliability ICCs were 0.97 (95% CI: 0.91-0.99) for inspiratory thickness measurements and 

0.98 (95% CI: 0.94-0.99) for expiratory thickness. Intra-rater reliability ICCs were 0.94 (95% 
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CI: 0.79-0.98) for inspiration thickness and 0.98 (95% CI: 0.94-0.99) for thickness at 

expiration. 

 

The sonography procedures used to measure diaphragm thickness in this study will closely 

follow the same procedure used by Boon et al (2013). Firstly, using real time B-mode 

ultrasound the intercostal space where the diaphragm was most easily visible was determined, 

the transducer covering two ribs. The diaphragm was identified by its characteristic 3-layered 

appearance deep to the intercostal muscles (the diaphragm is seen as a hypoechoic (dark) 

structure between two hyperechoic (bright) lines of pleural and peritoneal fascia). On 

observation, the hypoechoic muscle increased in size during the inspiratory phase. Once the 

most appropriate intercostal space to see the diaphragm was located on each individual, the 

subject was instructed to breathe quietly while three images were taken at end of quiet 

expiration. The subject was then instructed to breath slow and deeply as three more images 

where taken when the diaphragm was at maximal thickness (as identified visually by the 

operator or at the point at which visualisation of the diaphragm became obscured by the 

lung). Electronic calipers (a function of the ultrasound scanner) were used to measure the 

diaphragm thickness at the point where the two hyperechoic lines outlining the diaphragm 

were parallel. The three images for each position were then averaged to give a diaphragm 

thickness at end of quiet expiration and a full maximal inspiration. Boon et al (2013) 

measured inter-rater reliability by having two different examiners take measurements of the 

same subject and intra-rater reliability by having the same examiner measure the same 

subject on two different days. 

 

1.7.5 Ultrasound of diaphragm: reliability.  

The investigation of reliability is important within quantitative research and indicates a 

sufficient degree of replicability of research results using the same measurement procedures. 

Reliability is commonly assessed using correlation indices, indicating the ‘noise’ or error in 

the measurement (Davidson et al., 2014). Kirk et al (1986) first subcategorized reliability into 

three different types; (1) the degree to which any given measurement remains the same when 

repeated; (2) how stable a particular measurement is over time; (3) the likeness of 

measurements within a particular time frame. 

 

Boon et al. (2013) investigated quantitative diaphragm thickness values in healthy subjects 

obtained from USI, including inter-rater and intra-rater reliability for 12 and 10 subjects, 
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respectively. Subjects were examined in a supine position; real time ultrasound was used to 

identify the intercostal space at which the diaphragm was most visible. 

 

Baldwin et al. (2011) investigated the reliability of diaphragm and peripheral muscle 

thickness utilising USI, where 13(6 men and 7 women) healthy volunteers participated. 

Diaphragm thickness was measured on the right hemi-diaphragm in the zone of apposition 

found at the mid-axillary line at the level of the 9th intercostal space. Diaphragm thickness 

was measured from three images captured during one stable tidal breath. These three images 

were taken from; (1) breath hold with open glottis during expiration, (2) at 25% of maximal 

inspiratory capacity and (3) at 50% of maximal inspiratory capacity. To mitigate re-test 

differences of an individual’s inspiratory capacity, spirometry measurements were used to 

assess lung volume of participants and calculated percentage of each participants’ inspiratory 

capacity by the average volume displacement of a single breath hold. In addition, participants 

were also asked to rate the level of difficulty associated with each breath maneuver as 

measured using a 100-mm visual analogue scale. Participant underwent re-test measurement 

session between 2 hours and 2 days after the initial session. Intra-rater reliability ICCs were 

incredibly high with expiration thickness measurement ICCs at 0.990 (95% CI: 0.918-0.998) 

and measurements taken at 25% and 50% inspiratory capacity, was ICC 0.959 (95% CI: 

0.870-0.988) and ICC 0.994 (95% CI: 0.980-0.998) respectively.       
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Designing Reliability Studies using Quality Appraisal Tools  

When designing the methodology for a reliability study, there are several quality appraisal 

tools and reporting checklists that provide guidance. The quality appraisal tool for studies of 

diagnostic reliability (QAREL) framework (Lucas et al, 2010) identifies 11 items that should 

be considered in order to control for bias (see Table 1).   

 

Table 1. Quality Appraisal of Diagnostic Reliability (QAREL) Checklist (Lucas et al, 

2010) 

Item Description 

1 Was the test evaluated in a sample of subjects who were representative of those 

to whom the authors intended the results to be applied? 

2 Was the test performed by raters who were representative of those to whom the 

authors intended the results to be applied? 

3 Were raters blinded to the findings of other raters during the study? 

4 Were raters blinded to their own prior findings of the test under evaluation? 

5 Were raters blinded to the results of the accepted reference standard or disease 

status for the target disorder (or variable) being evaluated? 

6 Were raters blinded to clinical information that was not intended to be provided 

as part of the testing procedure or study design? 

7 Were raters blinded to additional cues that were not part of the test? 

8 Was the order of examination varied? 

9 Was the stability (or theoretical stability) of the variable being measured taken 

into account when determining the suitability of the time-interval between 

repeated measures? 

10 Was the test applied correctly and interpreted appropriately? 

11 Were appropriate statistical measures of agreement used? 

 



 21 

The QAREL items in the table above will be discussed in the context of designing the 

reliability study that is reported in Section II. Some of the QAREL items are purposefully 

omitted from further discussion as they are not deemed relevant for this specific study (e.g. 

Item 3, as there will be only one rater in this study). 

 

Was the test evaluated in a sample of subjects who were representative of those to whom the 

authors intended the results to be applied? (QAREL Item 1) 

Firstly, when considering the sample of participants in a reliability study, investigators should 

ensure that they establish eligibility criteria which generate a sample that is representative of 

the target population to whom the investigators intend the results to be applied. In order to 

generalise the findings widely, it is necessary to design eligibility criteria that selects for a 

wide spread of age, gender, and breathing quality. As a child’s body morphology is 

considerably different and changing more frequently compared to adults it does not make 

sense to combine both in the same sample. When designing study methodology, it will be 

important to identify which age range would be preferred, as it directly determines how 

participants are recruited. The use of both the Self Evaluation of Breathing Questionnaire 

(Courtney & Greenwood, 2009) and Nijmegen Questionnaire (van Dixhoorn & 

Duivenvoorden, 1985) could act as a proxy measure of breathing quality within a sample.  

 

Was the test performed by raters who were representative of those to whom the authors 

intended the results to be applied? (QAREL Item 2) 

As this study hopes to inform manual therapy practitioners who may wish to measure 

diaphragm thickness in the context of therapy for breathing related disorders, the rater chosen 

for the study should also be a manual therapist with limited experience using diagnostic 

ultrasound. To try and mimic the amount of training a practitioner would likely encounter 

before acquiring an ultrasound machine, the level of training that would be appropriate would 

be around two days as it would be comparable to the amount of training a rehabilitation 

provider might receive after purchasing an ultrasound machine  

 

Were raters blinded to their own prior findings of the test under evaluation? (QAREL Item 4) 

In order to blind a rater to their own findings throughout data collection, a portion of the 

sonography screen showing the measurement needs to be concealed. This is often done by 

sticking a shield on a portion of the screen to hide the measurement being displayed. A screen 

shot function on the sonography machine allows recording of measurements while still being 
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blinded to them. The saved images containing the measurements can then be downloaded 

after each session for later analyses at the completion of data collection. Having a 

standardized protocol like this ensures proper blinding which if not in place could falsely 

increase reliability.  

 

Were raters blinded to additional cues that were not part of the test? (QAREL Item 7) 

In addition, a rater should be blinded to cues associated with subjects which might be able to 

link as an aide to memory between measurement sessions. As the skin needs to be exposed 

for ultrasound imaging, identifying cues such as scars and tattoos will be unavoidable. To try 

and minimize the effects of this, all participants should be encouraged to just expose the area 

over their lower ribs, without taking their whole top off.  

 

Was the order of examination varied? (QAREL Item 8) 

The order of subjects to be examined should be randomized in order to control for bias which 

could be introduced by order effects. If the order of examination is constant between sessions 

the rater has a higher chance remembering details of the first scan which could have been 

avoided. When booking participants into appointment times, care should be taken to seek a 

different time for the participant from the first session to the second if possible. 

 

Was the stability (or theoretical stability) of the variable being measured taken into account 

when determining the suitability of the time-interval between repeated measures? (QAREL 

Item 9) 

As the diaphragm is a muscular structure, the thickness measurement may potentially be 

influenced by the participant’s activities between sessions. There appears to be no previous 

reliability studies measuring the diaphragm reporting any controls for this variable. There are 

two things to consider when planning interval time frames between sessions. Firstly, the 

interval should not be too long as skeletal muscle such as the diaphragm can grow with 

exercise and training which changes the thickness of the variable being measured. However, 

if the interval between session is too short, it may introduce recall bias on the raters’ part. For 

example, in a sonography reliability study if a transducer is positioned in a certain spot in 

relation to a participants’ identifiable feature such as a tattoo or mole, it might be possible to 

remember this in the second session if the interval between the sessions is too short. 

Secondly, in a real-life clinical setting, a practitioner would often choose one to two-week 

follow-up for most patients following an intervention. Because of these factors, a time of 



 23 

between 7 and 14 days between sessions is often desired in reliability studies to minimize 

their potential effects on intra-rater reliability (Hides et al, 2007; Wilson et al, 2016). 

 

Was the test applied correctly and interpreted appropriately? (QAREL Item 10) 

In order to control that the test is applied correctly by the rater, an experienced sonographer 

should oversee trial scans prior to data collection. Only once the experienced sonographer is 

satisfied that the rater was using the ultrasound machine properly and applying the test 

correctly, should data collection commence.  

 

Research purpose 

The preliminary research conducted by Boon et al (2013) established quantitative values of 

diaphragm thickness in normal subjects, but it is not clear how operator expertise might 

impact intra-rater reliability of thickness measurements, this warrants further investigation. 

Additionally, there is a lack of research investigating the relationship between diaphragm 

thickness and dysfunctional breathing. It is evident that diaphragm atrophy is common 

amongst mechanically ventilated people, as underuse of the muscle causes thickness decline. 

It is a lot less clear if diaphragm thickness atrophy is prevalent within a broader range of 

breathing dysfunction and diaphragm ‘mis-use’. Given the increasing use of RUSI by manual 

therapists with limited sonography experience, reliability research which represents an 

inexperienced operator will provide an insight into the usefulness and applicability of this 

imaging modality for these operators.  

 

Considering the above, the research reported in Section II of this thesis has two aims: 

 

1. Establish non-sonographer intra-rater reliability of diaphragm thickness 

measurements utilising USI. 

2. Establish whether there is a correlation between measured diaphragm thickness and 

self-perceived breathing quality as calculated by the Self Evaluation of Breathing 

Questionnaire and Nijmegen Questionnaire.   

 

 

  



 24 

References 

Anraku, M., & Shargall, Y. (2009). Surgical Conditions of the Diaphragm: Anatomy and 

Physiology. Thoracic Surgery Clinics, 19(4), 419-29 

Arráez-Aybar, L. a, González-Gómez, C. C., & Torres-García, a J. (2009). Morgagni-Larrey 

parasternal diaphragmatic hernia in the adult. Revista Española de Enfermedades Digestivas: 

Organo Oficial de La Sociedad Española de Patología Digestiva, 101(5), 357–66.  

Bain, W., & Harrington, J. (1983). Head and neck manifestations of gastroesophageal reflux. 

The Laryngoscope, 93(2), 175-179  

Baria, M. R., Shahgholi, L., Sorenson, E. J., Harper, C. J., Lim, K. G., Strommen, J. A., ... & 

Boon, A. J. (2014). B-mode ultrasound assessment of diaphragm structure and function in 

patients with COPD. Chest, 146(3), 680-685. 

Bordoni, B., Marelli, F., Morabito, B., & Sacconi, B. (2016). Manual evaluation of the 

diaphragm muscle. International Journal of Chronic Obstructive Pulmonary Disease, 11, 

1949.  

Bordoni, B., & Zanier, E. (2013). Anatomic connections of the diaphragm: Influence of 

respiration on the body system. Journal of Multidisciplinary Healthcare, 6, 281.  

Boon, A. J., Harper, C. J., Ghahfarokhi, L. S., Strommen, J. A., Watson, J. C., & Sorenson, E.   

J. (2013). Two‐dimensional ultrasound imaging of the diaphragm: Quantitative values in 

normal subjects. Muscle & Nerve, 47(6), 884-889. 

Brown, C., Tseng, S. C., Mitchell, K., & Roddey, T. (2018). Body position affects 

ultrasonographic measurement of diaphragm contractility. Cardiopulmonary Physical 

Therapy Journal, 29(4), 166. 

Courtney, R. (2009). The functions of breathing and its dysfunctions and their relationship to 

breathing therapy. International Journal of Osteopathic Medicine, 12(3), 78-85. 

Courtney, R., Greenwood, K. M., & Cohen, M. (2011). Relationships between measures of 

dysfunctional breathing in a population with concerns about their breathing. Journal of 

Bodywork and Movement Therapies, 15(1), 24–34.  

Cretikos, M., Bellomo, R., Hillman, K., Chen, J., Finfer, S., & Flabouris, A. (2008). 

Respiratory rate: the neglected vital sign. Medical Journal of Australia. Medical Journal of 

Australia, 188(11), 657. 

Davidson, M., & Keating, J. (2014). Patient-reported outcome measures (PROMs): how 

should I interpret reports of measurement properties? A practical guide for clinicians and 

researchers who are not biostatisticians. British Journal Of Sports Medicine, 48(9), 792-796. 

DiNino, E., Gartman, E. J., Sethi, J. M., & McCool, F. D. (2014). Diaphragm ultrasound as a 

predictor of successful extubation from mechanical ventilation. Thorax, 69(5), 431-435. 

Downey, R. (2011). Anatomy of the Normal Diaphragm. Thoracic Surgery Clinics, 21(2), 

273-9. 



 25 

du Plessis, M., Ramai, D., Shah, S., Holland, J. D., Tubbs, R. S., & Loukas, M. (2015). The 

clinical anatomy of the musculotendinous part of the diaphragm. Surgical and Radiologic 

Anatomy, 37(9), 1013–1020.  

Fieselmann, J. F., Hendryx, M. S., Helms, C. M., & Wakefield, D. S. (1993). Respiratory rate 

predicts cardiopulmonary arrest for internal medicine inpatients. Journal of General Internal 

Medicine, 8(7), 354-360. 

Gerscovich, E. O., Cronan, M., McGahan, J. P., Jain, K., Jones, C. D., & McDonald, C. 

(2001). Ultrasonographic evaluation of diaphragmatic motion. Journal of Ultrasound in 

Medicine, 20(6), 597-604. 

Gest, T. R., & Hildebrandt, S. (2009). The pattern of the thoracic splanchnic nerves as they 

pass through the diaphragm. Clinical Anatomy, 22(7), 809–814.  

Goligher, E. C., Fan, E., Herridge, M. S., Murray, A., Vorona, S., Brace, D., & Bolz, S. S. 

(2015). Evolution of diaphragm thickness during mechanical ventilation. Impact of 

inspiratory effort. American Journal of Respiratory and Critical Care Medicine, 192(9), 

1080-1088. 

Harper, C. J., Shahgholi, L., Cieslak, K., Hellyer, N. J., Strommen, J. A., & Boon, A. J. 

(2013). Variability in diaphragm motion during normal breathing, assessed with B-mode 

ultrasound. Journal of Orthopaedic & Sports Physical Therapy, 43(12), 927-931. 

Hellyer, N. J., Andreas, N. M., Bernstetter, A. S., Cieslak, K. R., Donahue, G. F., Steiner, E. 

A., & Boon, A. J. (2017). Comparison of diaphragm thickness measurements among postures 

via ultrasound imaging. Physical Medicine And Rehabilitation, 9(1), 21-25. 

Hides, J. A., Miokovic, T., Belavý, D. L., Stanton, W. R., & Richardson, C. A. (2007). 

Ultrasound imaging assessment of abdominal muscle function during drawing-in of the 

abdominal wall: an intrarater reliability study. Journal of Orthopaedic & Sports Physical 

Therapy, 37(8), 480-486. 

Hodges, P. W., Eriksson, A. E. M., Shirley, D., & Gandevia, S. C. (2005). Intra-abdominal 

pressure increases stiffness of the lumbar spine. Journal of Biomechanics, 38(9), 1873–1880.  

Hornsveld, H., & Garssen, B. (1997). Hyperventilation syndrome: an elegant but 

scientifically untenable concept. The Netherlands Journal of Medicine, 50(1), 13-20. 

Hornsveld, H. K., Garssen, B., Dop, M. F., Van Spiegel, P. I., & De Haes, J. C. J. M. (1996). 

Double-blind placebo-controlled study of the hyperventilation provocation test and the 

validity of the hyperventilation syndrome. The Lancet, 348(9021), 154-158. 

Kiesel, K. B., Uhl, T. L., Underwood, F. B., Rodd, D. W., & Nitz, A. J. (2007). Measurement 

of lumbar multifidus muscle contraction with rehabilitative ultrasound imaging. Manual 

Therapy, 12(2), 161-166. 

Kirk, J., Miller, M. L., & Miller, M. L. (1986). Reliability and validity in qualitative 

research (Vol. 1). Sage Publishers. 



 26 

Kolář, P., Neuwirth, J., Šanda, J., Suchanek, V., Svata, Z., Volejnik, J., & Pivec, M. (2009). 

Analysis of diaphragm movement during tidal breathing and during its activation while 

breath holding using MRI synchronized with spirometry. Physiological Research, 58(3). 
 

Kotani, T., Minami, S., Takahashi, K., Isobe, K., Nakata, Y., Takaso, M., ... & Moriya, H. 

(2004). An analysis of chest wall and diaphragm motions in patients with idiopathic scoliosis 

using dynamic breathing MRI. Spine, 29(3), 298-302. 

Lee, S. L., Ku, Y. M., & Rha, S. E. (2010). Comprehensive reviews of the interfascial plane 

of the retroperitoneum: Normal anatomy and pathologic entities. Emergency Radiology, 

17(1), 3.  

Lewis, R. A., & Howell, J. B. (1986). Definition of the hyperventilation syndrome. Bulletin 

Européen De Physiopathologie Respiratoire, 22(2), 201-205. 

Ludwig, M. (2013). Inter and intra-rater reliability of the manual assessment of respiratory 

motion ('MARM' technique) in adults. Unitec Institite of Technology, Master thesis. 

McCool, F. D., & Tzelepis, G. E. (2012). Dysfunction of the diaphragm. New England 

Journal of Medicine, 366(10), 932-942. 

Menegatti, E., Tessari, M., Gianesini, S., Elena Vannini, M., Sisini, F., & Zamboni, P. 

(2014). Human internal jugular valve M-mode ultrasound characterization. Current 

Neurovascular Research, 11(2), 149-155. 

 

Merrell, A. J., & Kardon, G. (2013). Development of the diaphragm–a skeletal muscle 

essential for mammalian respiration. The FEBS Journal, 280(17), 4026-4035. 
 

Nason, L. K., Walker, C. M., McNeeley, M. F., Burivong, W., Fligner, C. L., & Godwin, J. 

D. (2012). Imaging of the diaphragm: anatomy and function. Radiographics, 32(2), E51-E70. 

 

Nelson, T. R., Fowlkes, J. B., Abramowicz, J. S., & Church, C. C. (2009). Ultrasound 

biosafety considerations for the practicing sonographer and sonologist. Journal of Ultrasound 

in Medicine, 28(2), 139-150. 

Normura, J. T., & Nagdev, A. D. (2018). Ultrasound Safety and Infection Control. In 

Ultrasound Program Management, 243-267. 

Ottenheijm, C. A. C., Heunks, L. M. A., & Dekhuijzen, R. P. N. (2008). Diaphragm 

adaptations in patients with COPD, 14, 1–14.  

Peiper, C., Junge, K., Prescher, A., Stumpf, M., & Schumpelick, V. (2004). Abdominal 

musculature and the transversalis fascia: an anatomical viewpoint. Hernia, 8(4), 376-380. 
 

Pickering, M., & Jones, J. F. (2002). The diaphragm: two physiological muscles in 

one. Journal Of Anatomy, 201(4), 305-312. 

Quanjer, P. H., Tammeling, G. J., Cotes, J. E., Pedersen, O. F., Peslin, R., & Yernault, J.-C. 

(1993). Lung volumes and forced ventilatory flows. European Respiratory Journal (Vol. 6).  



 27 

Reißig, A., & Kroegel, C. (2005). Accuracy of transthoracic sonography in excluding post-

interventional pneumothorax and hydropneumothorax: comparison to chest 

radiography. European Journal of Radiology, 53(3), 463-470. 

Schuenke, M. D., Vleeming, A., Van Hoof, T., & Willard, F. H. (2012). A description of the 

lumbar interfascial triangle and its relation with the lateral raphe: Anatomical constituents of 

load transfer through the lateral margin of the thoracolumbar fascia. Journal of Anatomy, 

221(6), 568-576  

Seok, J. I., Kim, S. Y., Walker, F. O., Kwak, S. G., & Kwon, D. H. (2017). Ultrasonographic 

findings of the normal diaphragm: thickness and contractility. Annals of Clinical 

Neurophysiology, 19(2), 131-135. 

ter Haar, G. (2015). Ultrasound bio-effects and safety considerations. In Translational 

Neurosonology (Vol. 36, pp. 23-30). Karger Publishers. 

Teyhen, D., & Koppenhaver, S. (2011). Rehabilitative ultrasound imaging. Journal of 

Physiotherapy, 57(3), 196. 

Willard, F., Vleeming, a, Schuenke, M., Danneels, L., & Schleip, R. (2012). The 

thoracolumbar fascia: anatomy, function and clinical considerations. Journal of Anatomy, 

221(6), 507-536  

Wilson, A., Hides, J. A., Blizzard, L., Callisaya, M., Cooper, A., Srikanth, V. K., & 

Winzenberg, T. (2016). Measuring ultrasound images of abdominal and lumbar multifidus 

muscles in older adults: A reliability study. Manual Therapy, 23, 114-119. 

Zambon, M., Greco, M., Bocchino, S., Cabrini, L., Beccaria, P. F., & Zangrillo, A. (2017). 

Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a 

systematic review. Intensive Care Medicine, 43(1), 29-38. 

  



 28 

SECTION II – Manuscript 

 

Reliability of diaphragm muscle thickness measurements using 

ultrasound imaging 

 

 

 

Author: 

Ben N Giles 

 

Correspondence address: 

Department of Community Development (Osteopathy) 

 

Unitec Institute of Technology 

Private Bag 92025 

Auckland Mail Centre 

Auckland 1142, NZ 

 

Tel: +64 21 02216568 

Email: beng3395@gmail.com 

 

 



 29 

Table of Contents 

 
1. Abstract.                                              30 

2. Introduction           32 

3. Methods           34 

3.1 Design and ethics          34 

3.2 Participants          34 

3.3 Procedures          35 

3.4 Questionnaires          35 

3.5 Measurement protocol         36 

3.6 Data analysis          39 

4. Results           40 

4.1 Measurement protocol reliability        40 

4.2 Table 1.  Participant characteristics       41 

4.3 Table 2. Diaphragm thickness measurements      41 

4.4 Table 3. Intra-rater Reliability of Diaphragm Thickness Measurements   42 

4.5 Table 4. Diaphragm Contractility Measurements and Relation to  

Dysfunctional Breathing Questionnaire Scores      42 

5. Discussion           43 

6. Limitations           47 

7. Future Research          48 

8. Conclusions           49 

9. References           50 

Abbreviations 

Ultrasound Imaging (USI), Self Evaluated Breathing Questionnaire (SEBQ), Nijmegen 

Questionnaire (NQ) 



 30 

Abstract 

 

Reliability of diaphragm muscle thickness measurements using ultrasound imaging 

 

Background: As the primary muscle of ventilation, the diaphragm has a pivotal role in 

breathing, and in maintaining homeostasis for all other body systems. There have been 

several previous studies assessing reliability of measuring diaphragm muscle thickness using 

ultrasound imaging (USI) by qualified sonographers, however, no previous study has 

investigated reliability of measurement by a rehabilitation practitioner. Additionally, no 

evaluation has been done to determine a link between diaphragm thickness and breathing 

measures.  

Aims: (1) To investigate the reliability of diaphragm thickness measurements utilising USI by 

a non-sonographer (‘novice operator’); and (2) To evaluate the correlation between 

diaphragm thickness measurements including contractility and dysfunctional breathing as 

measured by the Self Evaluated Breathing Questionnaire (SEBQ) and the Nijmegen 

Questionnaire (NQ) 

Methods: High-resolution, B-mode ultrasound was utilised to execute a standardized protocol 

for repeated thickness measurements of diaphragm muscle. A convenience sample of 25 

participants (13 males, 12 females, mean ± SD age = 27 ±7.2 years, height 172.6 ± 9.3cm, 

body mass 79 ± 14.5 and a mean SEBQ and NQ score of 14.9 ± 11.2 and 13.3 ± 7.2, 

respectively) attended two sessions, separated by an interval of approximately 2 weeks. Intra-

operator reliability was calculated for all thickness measurements obtained by the novice USI 

operator. 

Results: The novice operator demonstrated ‘very high’ intra-operator reliability for 

diaphragm muscle thickness measurements during all stages of breathing except for maximal 

inspiration on the right (all other ICCs >0.8). However it was apparent that diaphragm 

contractility may not be an adequate measure of diaphragm function as measured by the 

SEBQ and NQ.    

Conclusion: Within this study, the novice operator demonstrated acceptable reliability for 

diaphragm muscle thickness measurements using USI. The novice operator demonstrated 

very high intra-operator reliability for diaphragm measurements during quiet exhalation on 

both sides and at the level of maximal inspiration on the left. 
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Introduction 

The thoracic diaphragm muscle is the primary muscle involved in the mechanics of 

breathing. Normal, ‘quiet’ breathing, otherwise known as ‘diaphragmatic breathing’, requires 

synchronized motion of the abdomen (diaphragm), lower and upper rib cages with little 

exertion required by the individual. The synergy between lower and upper rib cages can 

become disrupted, as seen in people who suffer from paradoxical breathing (i.e. in which 

diaphragm motion is opposite the normal direction during both inspiratory and expiratory 

cycles), and hyperventilation syndrome (Folgering, 1999). If the diaphragm is unable to 

function efficiently, ventilation issues may develop such as compromised gas exchange at the 

alveolar level due to insufficient lung expansion. In addition, other secondary muscles are 

required to contract more strongly and are therefore prone to fatigue to achieve the same level 

of chest wall expansion. Altered breathing mechanics can profoundly affect other body 

systems. For example, there appears to be an association between breathing anomalies, back 

pain (Smith et al., 2006), and neck pain (Kapreli, Vourazanis & Strimpakos, 2008). Due to 

the dual function of trunk muscles as both postural stabilisers and providing stability for 

breathing functions (Chaitow, 2004), it is theorised that dysfunction in either the spinal 

stabilisers or the diaphragm will negatively affect the other (Hodges et al., 2007), and may be 

related to back pain causation (Smith, Russell & Hodges, 2006).  

 

It has been demonstrated that like any skeletal muscle, when underused the diaphragm will 

atrophy and decrease in mass (Schepens et al., 2015). Given the importance of the diaphragm 

in maintaining homeostasis of body systems, valid and reliable methods of assessment to 

evaluate diaphragm function are necessary. Ultrasound imaging (USI) of the diaphragm 

muscle is attractive as it allows real-time, point of care, dynamic visualisation of the muscle 

during breathing with low risk of harm and low cost. However, currently there are limited 
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reliability data for USI measurements of the diaphragm, and only a few studies reporting 

normative measures of diaphragm muscle thickness in ‘normal’ subjects (Baldwin, Paratz & 

Bersten, 2011; Boon et al., 2013; Harper et al., 2013). There is now an emergence of 

rehabilitation providers (eg physiotherapists, osteopaths etc) using rehabilitative ultrasound 

imaging (RUSI) to assess muscle function in clinical practice (Kiesel et al., 2007; Teyhen & 

Koppenhaver, 2011). To date, no reliability studies have investigated a rehabilitation 

provider, rather than a sonographer, in measurement of diaphragm thickness. Therefore, the 

aim of this study was to assess the intra-rater reliability of diaphragm thickness 

measurements when undertaken by a non-sonographer with only minimal training in USI. 

Additionally, a secondary aim was to explore the correlation between both diaphragm 

thickness and contractility, and dysfunctional breathing symptom questionnaire scores. 
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Methods 

Design and ethics  

A repeated measures, test-retest design was used to investigate the intra-operator reliability of 

ultrasound imaging measurements for thickness of diaphragm muscle. A novice ultrasound 

imaging operator completed a standardized measurement protocol. Measures were 

undertaken at two sessions, separated by an interval of approximately two weeks. All 

participants provided written informed consent and the study was approved by the 

institutional ethics committee (UREC 2018-1111).  

 

Participants  

Participants 

A convenience sample of participants was recruited using word-of-mouth at the Unitec 

osteopathy teaching clinic. Inclusion criteria were: aged at least 18 years, and were able to 

provide informed consent. The only exclusion criterion was a history of abdominal or 

thoracic injuries/surgeries that made breathing either difficult or painful at the time of data 

collection.  

 

Operator 

The operator (B.G.) was a final year postgraduate student of osteopathy with no previous 

experience or formal training in sonography. The operator undertook three 2-hour tutorials 

with an experienced registered sonographer (S.A.) with over 20 years of clinical sonography 

experience and specialist expertise in musculoskeletal ultrasound imaging including 

ultrasound of the diaphragm. 
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Procedures 

All images were acquired using a Philips iU22 ultrasound scanner in B-mode (Philips, 

Medical Systems Company, Eindhoven, NV). In order to ensure maximal superficial 

resolution while still attaining an acoustic window between ribs, a 12-5 MHz linear 

transducer was used. The imaging protocol was developed over three sessions scheduled in a 

two-week period prior to the study. The operator received a total of 6 hours of practical 

training including supervised scanning of 5 participants during these sessions. This was 

intended to be broadly comparable to the level of training a manual therapist using 

Rehabilitative Ultrasound Imaging in clinical practice might typically have undertaken 

(Jedrzejczak & Chipchase, 2008).  Data collection proceeded only after the supervising 

sonographer was satisfied with the basic scanning technique and recording of measurements.  

 

Questionnaires 

All participants were required to fill out two breathing function questionnaires; the Self 

Evaluated Breathing Questionnaire (SEBQ) and the Nijmegen Questionnaire (NQ) (Courtney 

& Greenwood, 2009; Van Dixhoorn & Duivenvoorden, 1985). 

 

The 25 item SEBQ has been developed to measure breathing related symptoms and their 

severity. Scoring is done on a four point scale for various breathing related symptoms; (0) 

never/not true at all; (1) occasionally/a bit true; (2) frequently/mostly true; and, (3) very 

frequently/very true. A total score of greater than 11 in the SEBQ may indicate problems 

with your breathing. 

 

The 16 item NQ tests a broad range of symptoms associated with dysfunctional breathing but 

is mainly used to assess the presence of hyperventilation syndrome. Scoring is done on a five 
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point scale; (0) never, (1) Rarely, (2) sometimes, (3) often, (4) very often. A total score of 

over 23 in this questionnaire suggest a positive diagnosis for hyperventilation syndrome. 

Both questionnaires were included as one tests a broader range of breathing related symptoms 

(SEBQ) and the other is more specific for a diagnosis of hyperventilation syndrome (NQ). 

 

Additionally, the Wanner et al (2014), single-item physical activity measure was used to 

provide a quick approximation of a participant’s activity levels. The questions asked was, 

“how many days over the last week were you involved in physical activity”.  The answer was 

marked down as a single number between 0 and 7.  

 

Measurement protocol 

The protocol design was informed by previously published methods for measurement of the 

diaphragm muscle (Boon et al, 2013). Each participant was instructed to assume a supine 

position on a standard adjustable treatment table (Aster, Metron Medical) with the headrest 

offset at ~30° with one cervical pillow. Once oriented to the procedures, participants were 

instructed to only talk if necessary in order to not disturb the image during the scan. Initially 

the operator observed several cycles of normal quiet respiration to establish a baseline. If this 

was not achieved within the first minute of observation, the operator used verbal cues to 

encourage the participant to relax and establish a normal breathing rhythm. The transducer 

was placed between the ribs, approximately midway between the mid-clavicular and mid-

axillary lines. The transducer was then swept parallel to the ribs to establish a view of the 

diaphragm. Subtle movements of the transducer were utilised until all three layers of the 

diaphragm were visible such that the echogenic lines that make up the layers were the 

thinnest. These three layers are as seen as a hypoechoic (dark) structure between two 

hyperechoic (bright) fascial layers (Figure 1). To establish the correct intercostal space where 
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the measurement would be taken, the transducer was initially placed on an intercostal space 

in the vicinity of ribs 7 and 8. The participant was instructed to take a full breath in and out, 

and the operator observed the lung as a hyperechoic white band moving caudally.  If view of 

the diaphragm was obscured during full breaths it indicated the transducer was placed too 

cephalad and was moved caudally one intercostal space. This step was reproduced until the 

lung could be observed on-screen during a full inspiratory phase. This area of the diaphragm 

just below the visible lung was purposefully used for the location of the measurement to take 

place. Thickness measurements were taken here as preliminary testing demonstrated this to 

be more reproducible compared with the alternative of instructing the participant to undertake 

one maximal inspiratory breath where the ‘maximal’ breath would often differ between 

cycles. Once the desired intercostal space was found, and a cine-loop of a full inspiration and 

expiration cycle was recorded, diaphragm thickness measurements were then taken using the 

on-screen caliper function. The zoom function was utilized to improve visualisation of the 

three fascial layers. All images were taken in the following sequence; quiet expiration on the 

right, maximal inspiration on the right, quiet expiration on the left and maximal inspiration 

on the left. This was repeated three times in each session and the mean value of the three 

repetitions was used for all subsequent calculations. All images were digitally captured as 

screenshots and saved for later offline analyses. During the whole data collection process, the 

operator was blinded to all measurements displayed on the ultrasound screen using several 

layers of self-adhesive paper over the measurement fields on the display screen. The second 

measurement session was undertaken using the same procedures as the first session.  
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Panel A                                                                                                                                            Panel B 

Figure 1. Illustrated screen shot of diaphragm and surrounding tissues during quiet expiration (Panel A), and maximal inspiration (Panel B). 

Panel A, Notes: 1: Rib, 2: Hypoechoic (dark) middle layer of the diaphragm, 3: Hyperechoic (light) outer layers of the diaphragm, 4: Diaphragm thickness measurements taken from the 

inside of the two hyperechoic layers.  Panel B, Notes: 1: Calipers placed on the inside of the two hyperechoic layers of the diaphragm in order to take thickness measurements, 2: 

Distance between the calipers in cm, 3: Scale which shows depth in cm. 
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Data analysis 

Utilising G*Power 3.1.2 (Faul et al., 2009), a calculation was made in the planning stage of 

the study for sample size pertaining to correlational analyses. Using the parameters of power 

of 0.95, alpha of 0.05, and correlation coefficient of 0.7 a sample size of 20 was calculated to 

be sufficient.  After completion of all data collection, raw values were extracted from 

screenshots and tabulated in a spreadsheet.  The mean value of three measurements for each 

variable (ie QExp, maxInsp) were used for all subsequent analyses. All statistical analyses 

were undertaken using SPSS v23 (IBM Corp., Armonk, NY).  Descriptive statistics were 

generated to describe participant characteristics.  For all diaphragm measurements, 

exploration of normality was undertaken using visual inspection of P-P and Q-Q plots, by 

interpreting the Shapiro-Wilk statistic, and by consideration of kurtosis and skewness (Razali 

& Wah, 2011). To determine intra-rater reliability an intraclass correlation coefficient was 

calculated using a two-way random model (model 2,1) and 95% confidence interval 

calculated.  Reliability coefficients were interpreted based on the qualitative descriptors 

recommended by Hopkins (2002).  An a priori threshold for ICC coefficients that would be 

interpreted as clinically acceptable was defined as ICC > 0.6 (Chin et al., 1991). The 

Standard Error of Measurement (SEM) was calculated using the formula SEM = 1.96 * 

SQRT(1-ICC), and the Minimum Detectable Change (MDC) was calculated using the 

formula MDC = SEM * SQRT2 (Wu et al., 2011).  In order to assess diaphragm contractility, 

each participant’s maximal diaphragm thickness was divided by their resting thickness 

measurements to get a ratio, and also expressed as a percentage. To address the secondary 

aim, the difference between breathing questionnaire scores and relative diaphragm 

contractility was calculated. For this analysis participants were classified as either having 

dysfunctional breathing (DB(Yes)) if either their SEBQ scores were greater than 11 or if their 
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NQ scores were greater than 23 (Courtney & Greenwood, 2009; Van Dixhoorn & 

Duivenvoorden, 1985). Participants with lower scores than these cut-offs in both 

questionnaires were classified as having no dysfunctional breathing (DB (No)). Differences 

in contractility between DB(Yes) and DB(No) were calculated for the left and right 

diaphragm using the Mann-Whitney U test. 

 

Results 

Measurement protocol reliability 

Twenty-five adults (13 males, 12 females) participated in this study and their descriptive 

characteristics are shown in Table 1. Out of the twenty-five participants, twelve were 

categorised as dysfunctional breathers as having scored higher than the cut-off in either of the 

two questionnaires (SEBQ or NQ). All of the twelve ‘dysfunctional breathers’ were 

categorised through their SEBQ scores. Only one person was above the threshold for the NQ, 

however, that person also scored as a dysfunctional breather in the SEBQ score. The mean 

thickness and range of diaphragm measures at different stages of breathing are reported in 

Table 2. Intra-operator reliability ICCs, SEM and MDC are shown for both sides of the 

diaphragm including during both quiet expiration and maximal inspiration (Table 3). The 

operator showed ‘very high’ intra-operator reliability for measurements of the diaphragm in 

both quiet expiration and maximal inspiration on the left but only during quiet expiration on 

the right (Hopkins, 2002). The intra-operator reliability for measuring the diaphragm 

thickness during maximal inspiration on the right was ‘moderate’. Diaphragm contractility 

measurements were recorded as a percentage and also defined as a ratio (see Table 4). There 

were no significant difference in contractility measurements between the dysfunctional 

breathing group (DB (Yes)) and the non-dysfunctional breathing group (DB (No)) for either 

the left (z=-0.174, p=0.862) or right side of the diaphragm (z=-0.492, p=0.622).  
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Table 1.  Participant characteristics 

 

 Males Females Combined 

Age (y) 26.5 (8.3)  27.8 (6.7)  27 (7.2) 

Height (cm) 177.9(8.2) 167.3 (6.9) 172.6 (9.3)  

Body Weight (kg) 86.7 (10.4) 70.9 (13.3) 79 (14.5)  

Physical Activity1 3 (1-6, IQR=4)  3.5 (0-4, IQR=2)   3 (0-7, IQR=3) 

Nijmegen Score2 11.3 (8.2)  15.3 (5.7) 13.3 (7.2)  

SEBQ Score3 12.8 (12.1) 16.4 (10) 14.9 (11.2) 

Notes:  All values are mean (SD), or median (min-max, IQR). 1. Physical activity measured using 

the Wanner et al Single Item Physical Activity measure (Wanner et al., 2014). 2. Nijmegen score 

measured using the Nijmegen Questionnaire (Dixhoorn & Duivenvoorden, 1985). 3. SEBQ score 

measured using the Self Evaluated Breathing Questionnaire (Courtney & Greenwood, 2009) 

Table 2. Diaphragm thickness measurements (cm) 

 Right Side Left Side 

 Mean (SD) Range  

(min-max) 

Mean (SD) Range  

(min-max) 

Day 1     

   Quiet expiration 0.17 (0.06) 0.09 - 0.36 0.15 (0.04) 0.09 - 0.25 

   Max inspiration 0.30 (.099) 0.16 – 0.59 0.24 (0.07) 0.15 - 0.41 

Day 2     

   Quiet expiration 0.17 (.06) 0.09 – 0.34 0.16 (0.05) 0.09 - 0.26 

   Max inspiration 0.29 (.08) 0.17 – 0.52 0.24 (0.07) 0.15 - 0.38 

Notes: ICC (95%CI) = interclass correlation coefficient with a 95% confidence interval; SEM = 

standard error of measurement; MDC95 = minimum detectable change  
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Table 4. Diaphragm Contractility Measurements and Relation to Dysfunctional Breathing 

Questionnaire Scores 

 Contractility on right Contractility on left 

Mean  76.625% 58.879% 

SD 22.708 15.192 

Range (min-max) 39 - 115.8 34.2 - 92.2 

Defined as a ratio 1.74 1.56 

DB (Yes) 1.74 ± 0.22  1.59 ± 0.2 

DB (No) 1.79 ± 0.25 1.59 ± 0.11 

Notes: DB = Dysfunctional breathing as measured by fitting into either of the cut off criteria for the 

NQ or SEBQ. DB values are mean (SD) 

  

 Table 3. Intra-rater Reliability of Diaphragm Thickness Measurements 

 Diaphragm thickness during quiet expiration Diaphragm thickness during max inspiration 

 ICC (95%CI) SEM 

 (cm) 

MDC95 (cm) ICC (95%CI) SEM  

(cm) 

MDC95 (cm) 

Left 0.892  

(0.749-0.956) 

0.01 0.04 0.806  

(0.596-0.913) 

0.03 0.08 

Right 0.82  

(0.599-0.924) 

0.02 0.06 0.538  

(0.171-0.774) 

0.06 0.16 

Notes: ICC (95%CI) = interclass correlation coefficient with a 95% confidence interval; SEM = standard 

error of measurement; MDC95 = minimum detectable change 
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Discussion  

 
The main aim of this study was to investigate test re-test reliability for thickness 

measurement of the diaphragm muscle using ultrasound imaging by a novice operator. The 

main finding was that the operator was able to measure diaphragm muscle thickness with 

‘moderate’ to ‘high’ reliability, during maximal inspiration and quiet expiration on the left 

side and during quiet expiration on the right. However, when measuring maximal inspiration 

on the right, intra-operator reliability was in the range ‘low’ to ‘medium’. The secondary aim 

of this study was to establish diaphragm contractility measures for each participant and 

investigate the presence of group differences between contractility and dysfunctional 

breathing scores. The inclusion criteria used in this study were purposefully broad. One 

element of the quality appraisal tools developed by Lucas et al (2010), is that the test sample 

evaluated should be representative of those to whom the authors intended the results to be 

applied. In this study the eligibility criteria were purposefully broad to ensure a wide 

spectrum of participants that would be representative of real world scenarios. 

 

Comparison with previous studies 

To our knowledge, this is the first study to report the reliability of diaphragm thickness 

measurements utilising USI by a non-sonographer operator. There appears to be an increasing 

number of non-sonographer USI operators, especially in physiotherapy (Jedrzejczak & 

Chipchase, 2008; Ellis et al., 2018). Establishing novice operator reliability of muscle 

thickness measurement (and other tissues) using USI may support application in clinical 

practice. There are several studies that demonstrate the effectiveness of diaphragm tissue 

measurements acquired by experienced sonographers (Baldwin et al., 2011; Ferrari et al., 

2014; Goligher et al., 2015). Boon et al (2013) had a reliability component to their study 

when measuring diaphragm thickness, however, the extent of operator experience 

undertaking the ultrasound scans was not reported. Their study reported both inter-rater and 

intra-rater reliability for sonography operators to be ‘very high’ in a study of 150 healthy 

subjects. Intra-rater reliability ICCs were 0.94 (95%CI 0.79-0.98) for resting diaphragm 

thickness and 0.89 (0.69-0.97) for diaphragm thickness at the end of maximal inspiration. 

The results of Boon et al (2013) are promising, in that the diaphragm could be reliably 

measured during both inspiration and expiration, but it is still unclear whether these results 

could be replicated by a non-sonographer. It was one of our aims to investigate whether a 

novice operator with little sonography experience could achieve an acceptable level of 
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reliability for clinical application of this technique. As the price of portable ultrasound 

machines has decreased, an increasing number of rehabilitation providers are acquiring 

machines to support rehabilitation practice (Koppenhaver et al., 2009; Teyhen, 2011). As this 

emerging field of RUSI grows, it is evident there are several applications to breathing 

retraining and diaphragm monitoring. It is therefore important to determine that RUSI 

operators can scan and reliably measure a structure such as the diaphragm. The novice rater 

had comparable sonography training to what could be achieved on a short weekend length 

course, that is, no more than 8 hours of practical scanning experience. Here, the findings did 

not match the almost ‘perfect’ ICCs achieved by Boon et al., (2013). One explanation for the 

difference in observed reliability between our study and Boon et al may be the experience of 

the operator. However, other factors in their procedures also need to be considered including: 

excluding participants with a history of dyspnea which might remove variability between 

breaths; and only scanning one side of the diaphragm as they did not report on taking 

measurements bilaterally (Boon et., 2013). Additionally, Boon et al., (2013) failed to report 

whether raters were blinded to their own findings and possible additional cues (e.g. skin 

marking, tattoos etc.) (Lucas et al, 2010), as well as whether examination order was varied. 

Collectively, these aspects represent possible sources of bias that were not reported and may 

have inflated the reliability reported by Boon et al (2013). 

 

Exploration of diaphragm measures and breathing questionnaire scores 

A secondary aim was to establish whether diaphragm thickness and contractility could be a 

measure of dysfunctional breathing. This was addressed by calculating diaphragm 

contractility for all participants and considering the extent to which breathing dysfunction as 

measured by breathing questionnaires (NQ and SEBQ) differed from diaphragm contractility 

ratios. To our knowledge there are no studies investigating the correlation between 

diaphragm thickness and especially contractility to dysfunctional breathing.  There have been  

two different methods for calculating contractility reported in the literature. To measure 

diaphragm contractility as a percentage change, the following formula is used: (Tinsp-

Texp)/Texp*100 (Terada et al., 2016). Boon et al (2013) use a simple formula in order to 

calculate diaphragm contractility ratio: Tmax/Tmin, where (Tmax) is the thickness at full 

inspiration and (Tmin) is the thickness at the resting end expiration. There are also different 

approaches to interpreting contractility findings. According to Boon et al (2013), average 

thickening ratios are ~1.8, with a lower limit of normal of 1.2. They also suggest that 
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contractility measures may be a more reliable measure of a person’s diaphragm function than 

thickness measurements alone. The results in this study are more in-line with those of Harper 

et al (2013), who suggest diaphragm contractility may not be an adequate measure of 

diaphragm function. Harper et al argue that low contractility measures may be found in 

healthy active subjects, because in this group only very limited contraction of the diaphragm 

takes place during quiet breathing (Harper et al, 2013). This suggests that a low contractility 

value could indicate either a breathing problem where a subject’s diaphragm has lost most of 

its contractile properties, or conversely, those who are very healthy and as such are very 

efficient and need only exert minimal diaphragm contraction at rest.  

 

Internal validity – controls for bias  

The characteristics of participants in reliability studies should be designed to be 

representative of the target population to whom the study findings are intended to be applied 

(Lucas et al., 2010). Here, the eligibility criteria were purposefully selected to include a wide 

variation in age, gender, and level of breathing dysfunction in order to be representative of 

those who might present to rehabilitation providers (i.e. physiotherapy and osteopathy 

practitioners). In addition, both SEBQ (Courtney & Greenwood, 2009) and Nijmegen (van 

Dixhoorn & Duivenvoorden, 1985) questionnaires, were completed by all participants prior 

to undergoing scans. This was to ensure that there was an adequate spectrum of self-

perceived breathing quality across the sample. By doing this, the results of this study could be 

extrapolated to the general public. The classification for dysfunctional breathing in this study 

was based on threshold scores for the SEBQ (Courtney & Greenwood, 2009) and NQ (van 

Dixhoorn & Duivenvoorden, 1985). These questionnaires have been tested with rigor and 

have been used in many breathing studies to date to show breathing efficacy. Being over the 

threshold in either of those two questionnaires resulted in the participant being grouped in the 

dysfunctional breathing (DB) category. This was decided to have a wide range of participants 

with dysfunctional breathing and those who are completely asymptomatic. The operator who 

performed the USI measures was a postgraduate osteopathy student, with no previous 

sonography experience. This was intended so that the results could be directly applied to 

rehabilitation providers such as osteopaths and physiotherapists who may employ RUSI with 

minimal training in the context of managing breathing related dysfunction (Benjamin et al., 

2016).  

 



 46 

Recall bias within this study could include rater knowledge of previous diaphragm 

measurements during data collection, which should be controlled for when establishing intra-

rater reliability (Lucas et al, 2010). To mitigate this potential bias, the operator was blinded to 

all measures throughout the course of data collection. This was achieved by applying self-

adhesive paper shields on the area of the ultrasound screen to blind the operator from 

measurements. Images showing the measurements were saved for later analysis, and so the 

operator was not privy to the measurements between trials in the same session but was also 

blinded from any of the measurements throughout the data collection process until data 

collection was completed. In order to minimize the effects of operator bias related to 

knowledge of participants’ scores to breathing dysfunction indicators, the operator was 

blinded to the results of both the SEBQ and Nijmegen questionnaires prior to undertaking 

each scan.  

 

A further source of potential bias in the design of test re-test reliability studies may be the 

recognition of additional cues or identifiable characteristics on some participants (e.g. skin 

moles, scars, tattoos etc.) (Lucas et al., 2010). An example of this would be if a participant 

had a tattoo over his/her ribs which would guide the operator in the second session rather 

than using the established scanning protocol. The operator was blinded to additional cues to 

the extent that was reasonably achievable. As each participant was required to expose their 

lower ribs to allow scanning to take place, it was not considered reasonable to hide features 

such as tattoos or scars on their torso from the operator. However, care was taken to only 

expose the area of skin that needed to be scanned which minimized the potential for these 

additional cues to influence the reliability. 

 

In reliability studies, the interval between measures should be designed with the routine 

clinical application of the test in mind (Lucas et al., 2010) The two-week interval between 

sessions was selected for two reasons, firstly, that it would be sufficient time for the operator 

to forget specific characteristics (e.g. skin markings) about any one individual; and secondly, 

that the two week interval would be a period over which a practitioner might undertake a 

repeat measurement during the course of a clinical intervention.   

 

The order of subjects to be examined should be randomized in order to control for order bias 

(Lucas et al, 2010). However, this was logistically difficult to achieve due to participant 

availability and logistical constraints in accessing the ultrasound machine. Although not truly 
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random, there was some variation of the order in which participants were examined because 

participants were sometimes not able to attend the exact same time for both scanning sessions 

due to personal scheduling conflicts. Beyond this, no further attempt at varying examination 

order was made.  

 

In all reliability studies, it is important that the rater carries out the test correctly to ensure 

good intra-rater reliability (Lucas et al., 2010). For instance, in measurement of the 

diaphragm using USI, adequate knowledge of surface anatomy and identification of specific 

intercostal spaces is required in order to place the transducer in the correct location, making 

the diaphragm visible. As the rater was a novice in the use of USI, it took multiple trial runs 

with an experienced musculoskeletal sonographer to ensure that the test was applied 

correctly. It was not until the experienced sonographer was satisfied that the method and 

technique of extracting diaphragm measurements was demonstrated over several pilot 

subjects that the main data collection took place.  

 

Clinical applicability 

The results of this study should be of interest to practitioners and researchers involved in 

measuring diaphragm thickness. It is important to establish whether the same high reliability 

when measuring a dynamic structure as the diaphragm can also be seen in operators with 

minimal training and experience. In addition, a correlation between diaphragm thickness 

including contractility and breathing quality had not been previously investigated. For 

rehabilitation purposes, a practitioner with a USI device could then foreseeably note progress 

in diaphragm thickness variation. 

 

Limitations 

A limitation of this study include relatively small sample size (n=25), with a generally young 

mean age (27 years of age). Although the sample was adequate for reliability purposes, 

having both a larger sample size and also older participants would improve the 

generalisability of the findings across the range of ages who seek care for breathing related 

disorders, with the exception of those under the age of 18 years.  Hence, these results cannot 

be extrapolated to measuring children and caution must be taken in generalising to older 

adults. An additional limitation is that only intra-rater reliability was assessed and not inter-

rater reliability. 
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One of the challenges when scanning the diaphragm is locating a good acoustic window in 

which to visualise the muscle thickening during inspiration. Boon et al (2013), stated they 

used real time ultrasound to identify the intercostal space at which the diaphragm was most 

easily visualised and where the encroachment of lung tissue did not obstruct view of the 

diaphragm. This description of locating the portion of the diaphragm they wished to measure, 

although clear, was somewhat ambiguous. Soon after commencing pilot work it became 

apparent that it would be difficult to locate the same portion of the diaphragm from one week 

to the next. Variance in body morphology and rib angles meant transducer placement was 

different from person to person and often all three layers of the diaphragm were visible over 

two to three intercostal spaces. This made it challenging to decide where best to make 

measurements as multiple locations were possible. In addition, the breath volume used by the 

participants when recording maximal inspiration sometimes varied between measures within 

the single session. It appears that this potential problem has not previously been addressed in 

the literature. When piloting this study, our solution to both these obstacles was to initially 

place the scanner on a more cephalad intercostal space and scan in each intercostal space 

until the desired intercostal space was identified. A strength of this study was that the 

operator adapted the way in which diaphragm thickness measurements were taken to use the 

patient’s physiology as a marker instead of a subjective variable such as attempting to have 

the participant take the same ‘maximal’ inspiratory breath for each measurement.  

Specifically, this was achieved by commencing the scan at an intercostal space around ribs 7-

8 where the diaphragm was visible. At this stage the participant would be instructed to “take 

a full breath in” while we observed the monitor. If the hyperechoic band of the lung came 

into view to obstruct the view of the diaphragm, the intercostal space was considered to be 

too high and the next caudal intercostal space was reviewed. This process was repeated until 

the lung was visualised and started to separate the diaphragm from the adjacent parietal layer 

of the lung but stopped before completely shielding all three layers of the diaphragm.  

 

Future research 

This study focused only on intra-rater reliability of a single novice USI operator with 

minimal experience.  Future research should establish whether the same high reliability can 

be achieved between different operators, i.e. inter-rater reliability. This is especially 

important between operators of different skill and experience level. It would also be 

interesting to evaluate the effects of therapy on diaphragm thickness and contractility as 

measured using USI. Future research could also investigate interventions such as exercise or 
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a breathing retraining protocol (Benjamin et al., 2016) on possible changes in diaphragm 

thickness and contractility. Additionally, USI could be utilised before and after a single 

treatment or technique to observe possible changes within the diaphragm. Another variable 

that would be interesting to investigate further would be smoking status, as this could change 

diaphragm thickness measurements and contractility.  

 

Conclusions  

Within this study, a non-sonographer demonstrated acceptable reliability for diaphragm 

measurements using ultrasound. However, more research has to be conducted in order to 

establish whether a correlation between diaphragm thickness including contractility and 

dysfunctional breathing exists.    
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