• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Journal Articles
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Self-Organization Mechanism Based on Cross-Entropy Method for P2P-Like Applications

    Sarrafzadeh, Hossein; Chen, Gang

    Thumbnail
    Share
    View fulltext online
    ACM-Paper-a15-chen11.pdf (356.6Kb)
    Date
    2010
    Citation:
    Chen, G., Sarrafzadeh, A., Low, C., and Zhang, L. (2010). A self-organization mechanism based on cross-entropy method for P2P-like applications. ACM Transactions on Autonomous and Adaptive Systems. 5 (4) : 1-31.
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/2296
    Abstract
    P2P-like applications are quickly gaining popularity in the Internet. Such applications are commonly modeled as graphs with nodes and edges. Usually nodes represent running processes that exchange information with each other through communication channels as represented by the edges. They often need to autonomously determine their suitable working mode or local status for the purpose of improving performance, reducing operation cost, or achieving system-level design goals. In order to achieve this objective, the concept of status configuration is introduced in this article and a mathematical correspondence is further established between status configuration and an optimization index (OI), which serves as a unified abstraction of any system design goals. Guided by this correspondence and inspired by the cross-entropy algorithm, a cross-entropy-driven selforganization mechanism (CESM) is proposed in this article. CESM exhibits the self-organization property since desirable status configurations that lead to high OI values will quickly emerge from purely localized interactions. Both theoretical and experimental analysis have been performed. The results strongly indicate that CESM is a simple yet effective technique which is potentially suitable for many P2P-like applications.
    Keywords:
    algorithms, performance, experimentation, self-organization, peer-to-peer system, cross-entropy
    ANZSRC Field of Research:
    080201 Analysis of Algorithms and Complexity
    Copyright Holder:
    ACM

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Journal Articles [51]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    41
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga