• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Journal Articles
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Incremental and decremental max-flow for online semi-supervised learning

    Zhu, Lei; Pang, Shaoning; Sarrafzadeh, Hossein; Ban, Tao; Inoue, Daisuke

    Thumbnail
    Share
    View fulltext online
    Incremental and Decremental Max-flow for.pdf (5.987Mb)
    Date
    2016-04-13
    Citation:
    Zhu, L., Pang, S., Sarrafzadeh, A., Ban, T., & Inoue, D. (2016). Incremental and Decremental Max-flow for Online Semi-supervised Learning. IEEE Transactions on Knowledge and Data Engineering, 28, pp.1-13.
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/3582
    Abstract
    Max-flow has been adopted for semi-supervised data modelling, yet existing algorithms were derived only for the learning from static data. This paper proposes an online max-flow algorithm for the semi-supervised learning from data streams. Consider a graph learned from labelled and unlabelled data, and the graph being updated dynamically for accommodating online data adding and retiring. In learning from the resulting non stationary graph, we augment and de-augment paths to update max-flow with a theoretical guarantee that the updated max-flow equals to that from batch retraining. For classification, we compute min-cut over current max-flow, so that minimized number of similar sample pairs are classified into distinct classes. Empirical evaluation on real-world data reveals that our algorithm outperforms state-of-the-art stream classification algorithms.
    Keywords:
    graph mincuts, data modelling, online semi-supervised learning, max-flow, augmenting path, incremental decremental max-flow, residual graph, algorithms
    ANZSRC Field of Research:
    080109 Pattern Recognition and Data Mining
    Copyright Holder:
    Institute of Electrical and Electronics Engineers (IEEE)

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Journal Articles [51]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    671
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga