• Login
    View Item 
    •   Research Bank Home
    • Eastern Institute of Technology (EIT)
    • Information Technology
    • Information Technology Dissertations and Theses
    • View Item
    •   Research Bank Home
    • Eastern Institute of Technology (EIT)
    • Information Technology
    • Information Technology Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A pilot programme of fruit grading system using computer vision

    Wang, Liang

    Thumbnail
    Share
    View fulltext online
    MIT_2021_Liang_Wang.pdf (3.649Mb)
    Date
    2021
    Citation:
    Wang, L. (2021). A pilot programme of fruit grading system using computer vision. (Unpublished document submitted in partial fulfilment of the requirements for the degree of Master of Information Technology). Eastern Institute of Technology (EIT), New Zealand. https://hdl.handle.net/10652/5667
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/5667
    Abstract
    RESEARCH QUESTIONS: 1. How can New Zealand’s agriculture industry use computer vision technologies to improve the accuracy of their fruit grading system? 2. What are the similarities and differences in object detection and image classification effectiveness in grading fruits? 3. What factors influence agricultural companies’ decision on embracing computer vision for fruit grading in New Zealand? ABSTRACT: Traditional fruit grading work depends on a large labour force during harvesting time. However, the grading accuracy varies, resulting in difficulties in product quality management. Due to the COVID-19 pandemic, many of New Zealand's farming industries lack seasonal workers from overseas. Hence, they are looking at taking advantage of promising computer vision technologies to avoid reliance on the labour-intensive grading method. This research project designs a prototype fruit grading system using object detection algorithms to automatically sort fruits (e.g., squash), minimising manual intervention during the production process. The proposed system consists of fruit handling and image processing modules. Amazon's machine learning platform SageMaker and Google's machine learning framework TensorFlow are the two main software components in the system. We tested the prototype in a simulated production environment. The result proved that the selected approach could suit farming industries to achieve automation transformation during post-harvesting. Other findings include that object detection has better performance than image classification on identifying defects on fruits. The high cost of setting up a new fruit grading system has hindered agriculture companies from adopting the plan. Further research within this topic could incorporate farming experts to help gain higher dataset accuracy during labelling jobs and choose a proper approach to avoid unnecessary difficulties in manipulating data between different machine learning platforms.
    Keywords:
    computer vision, object detection, machine learning, deep learning, fruit grading, SageMaker, MXNet, TensorFlow, New Zealand
    ANZSRC Field of Research:
    300806 Post harvest horticultural technologies (incl. transportation and storage), 460304 Computer vision
    Degree:
    Master of Information Technology, Eastern Institute of Technology (EIT)
    Supervisors:
    Erturk, Emre; Dang, Daniel
    Copyright Holder:
    Author

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Information Technology Dissertations and Theses [3]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    248
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga